

HART® Kompatibler, intelligenter Zweidraht-Anschlusskopftransmitter

MESO-H / MESO-HX

Kurzbeschreibung:

MESO-H ist ein Smart und Universal Zweidraht-Anschlusskopftransmitter für Temperatur- und andere Messungen.

MESO-HX ist die Ex- Version für den Einsatz in Ex- Applikationen.

MESO-H und **MESO-HX** sind voll HART-kompatibel, mit Kommunikation durch das HART Protokoll direkt auf der 4...20 mA Ausgangsschleife, bei Benutzung eines HART-Handterminals oder der Inor PC Software **MePRO 2**.

Mit der auf Windows basierenden, benutzerfreundlichen Software *MePRO* kann auf die Funktionen des Transmitters zugegriffen werden und sie wird auch zur Konfiguration, Dokumentation, Anzeige- und zu Kalibrierzwecken eingesetzt.

Abmessungen:

7 Ø

33

44

Merkmale:

Exzellente Stabilität

• Langzeitstabilität 0,1 % / Jahr

Erweiterte, totale Systemgenauigkeit

 Sensorfehlerkorrektur (für bekannte Sensorfehler)

Eingang-Ausgang Isolierung 1500 VAC

. Eliminiert Messfehler, die durch Erdschleifen entstehen

Hohe Lastkapazität

. Nur 10 V Spannungsabfall über dem Transmitter (MESO-H) erlaubt hohe Last am Ausgang

Gebaut für raue Umgebungsbedingungen

- Betriebstemperaturbereich bis 85 °C (105 °C auf Anfrage)
- Excellente elektromagnetische Verträglichkeit
- Solide, stoßfeste Bauweise

Einfacher Anschluss und Montage

- Einbau in DIN-Anschlusskopf der Form B (oder größer)
- Große Zentrumsbohrung (∅7 mm)

5 Jahre Gewährleistung

 Innerhalb von 5 Jahren ab Lieferung auftretende Mängel werden bei freier Anlieferung im Werk kostenlos behoben.

Funktionen:

Voll HART® Kompatibel

 Echte Online-Kommunikation mit Handterminal-HART Kommunikator oder Windows Software MePRO 2

Eingang für RTD's, T/C's, mV, Ω

- Reduzierte Inventarkosten
- · Vereinfachte Anlagenkonstruktion

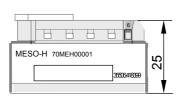
Effiziente kundenspezifische 50-Punkte-Linearisierung

Jeder Sensor kann angepasst werden

Sensor-Diagnose

- SmartSense erkennt zu niedrige Isolierung (wesentlich für korrekte Messungen)
- Wählbare Sensorbruchfunktion

Einfache Schleifenüberprüfung


 Der Transmitter arbeitet als präziser Stromgenerator

On-screen Anzeige und Linienschreiber

 Wertvolle Werkzeuge für temporäre Messungen

Verbesserte QS mit Datenspeicherung

 Wichtige Informationen, wie TAG-Nr., Wartungsaufzeichnungen etc. können in einen nichtflüchtigen Speicher geschrieben werden.

Massangabe in mm

Konfigurationsschema: **EINGANG** Spannung 2 mV...500 mV 10 Ω...2000 Ω Pt100 (DINIEC); D100 (Pt100 JIS) ,AE", ,,B", ,,E", ,,J", ,,K", ,,L", ,,N", ,,R", Ptx (10≤x≤1000); Ni100, Ni1000 S" T" U" und kundenspezifisch LINEARISIERUNG Temperaturlinear Temperaturlinea Widerstandslinea Spannungslinear Spannungslinea kundenspezifische kundenspezifische kundenspezifische Linean Linearisieruna Linearisierung ANSCHLUSSART UND ZUSATZFUNKTION 3-, 4-Leiteranschluss Vergleichsstellenkompensation Physikalische Einheit 3-, 4-Leiteranschluss 3-I eiter+SmartSense Ohne Vergl.stelllenkompensation Physikalische Finheit Min/Max Korrektur Diff.temp.(Pt100) Vergleichsstellenkompensation + Bruchüberwachung Sensorbruchüberwach SmartSense Min/Max Korrektu Sensorfehlerkorrektur Sensorüberwachung Svstemfehlerkorrektur Sensorfehlerkorrektu Systemfehlerkorrektu DÄMPFUNG Dämpfungszeit 0...10 s AUSGANG Spezial: Andere Werte innerhalb von 4...20 mA **BESTELLINFORMATION** MESO-H 70MEH00001 Zubehör: **Ex-Version:** MePRO 2 Software 70MEP00001 MESO-HX (CENELEC) 70MEHX0001 70MFM00001 HART Modem RS232 MESO-HX (FM Approval) 70MEHX1001 70ADA00012 Anschlusskopfmontagekit 70ADA00013 Schienenmontagekit

HART ® ist ein eingetragenes Warenzeichen der HART Communication

Technische Daten:

Eingang: RTD's und Widerstand			
Pt100; IEC751, α=0,00385, 3-, 4-L., Differenz	-200+1000 °C	Ni1000, DIN 43760, 3-, 4-Leiterschaltung	-60+150 °C
D100, (Pt100 gem. JIS1604, α=0,003916) 3-, 4-L.	-200+1000 °C	Widerstand, 3-, 4-Leiterschaltung	02000 Ω
Pt1000, IEC751, 3-, 4-Leiterschaltung	-200+200 °C	Potentiometer, 3-, 4-Leiterschaltung	02000 Ω
PtX 10≤X≤1000 (IEC751, α=0,00385), 3-, 4-L.	Oberer Bereich je nach X-Wert	Sensomessstrom	ca. 0,4 mA
Ni100, DIN 43760, 3-, 4-Leiterschaltung	-60+250 °C	Max. Leitungswiderstand	25 Ω / Leitung
Eingang: T/C's und Spannung			
Thermoelement Typ: AE, B, E, J, K, L, N, R, S, T, U	Bereich gem. Betriebsanl.	Max. Sensorleitungswiderstand	500Ω (gesamte Schleife)
Themoelement: "Kundenspezifisch"	Bereich gem. Betriebsanl.	Eingangsimpedanz	> 10 MΩ
Spannungseingang	-10+500 mV		
Überwachung			
Fühlerbruchsignal (wählbar zwischen)	3,6 mA22,8 mA	Isolationsfehlersignal Pt100, T/C (wählbar zwischen)	3,6 mA22,8 mA
Einstellmöglichkeit			
Nullpunkt (alle Eingangstypen)	Jed. Wert innerh. der Bereichsgrenzen	Kleinster Eingangsbereich Pt100, Pt1000, Ni100, Ni1000	
Kleinster Eingangsbereich (Thermoelement und mV)	2 mV	Kleinster Eingangsbereich Potentiometer	10 Ω
Ausgang			
Direkt, invertiert oder jeder Wert dazwischen	420 mA / 204 mA	Zulässige Belastung (MESO-HX, 520 Ω @ 24 VDC, 23 mA) 5)	610 Ω @ 24 VDC, 23 mA ⁵⁾
Minimum Ausgangssignal, Messung/Fehler	~ 3,6 mA	Auflösung	5 μA
Maximum Ausgangssignal , Messung/Fehler	~ 23 mA	Instrumentenkalibrierung wählbar 130 min,15 sek-Takt	4,12,20,12,4mA, ±8 µA
Temperaturbereich			
Betriebstemperatur (MESO-HX siehe Ex-Spezifikation)	-40+85 °C ′′	Lagertemperatur	-40+85 °C
Allgemeine Daten			
Update-Zeit	ca. 0,8 ⁸⁾ sek	Isolationsfestigkeit, Eingang / Ausgang (isol. Version)	1500 VAC / 1 min
Dämpfungszeit (wählbar)	010 sek.	Rel. Feuchte, keine Betauung	095 % RH
Versorgungsspannung (Transmitter ist polaritätsgeschützt)			
Versorgungsspannung (MESO-HX)	1042 ⁶⁾ (1230) ⁶⁾ VDC	Max. Welligkeit der Versorgungsspannung	2 V ss @ 50/60 Hz 9)
Genauigkeit			
Linearität (Widerstandsthermometer, Poti, mV)	0,1 % 1)	Temperatureinfluss 4)	Max. von ± 0,25 °C/25 °C
Linearität (Thermoelement)	0,1 % 1)	(alle Eingänge)	oder 0,25 % / 25 °C 1) 3)
Kalibrierung (Widerstandsthermometer)	Max.von ± 0,2 °C od. 0,1% ¹⁾	Sensorleitungswiderstandseinfluss, alle Eingänge, (3-L ²⁾)	vernachlässigbar
Kalibrierung (Potentiometer)	Max.von \pm 0,1Ω od. 0,1 % ¹⁾	Versorgungsspannungseinfluss	vernachlässigbar
Kalibrierung (Thermoelement, mV)	Max.von ± 20 μV od. 0,1 % 1)	Lasteinfluss	vernachlässigbar
Vergleichsstelle	± 0,5 °C	RFI-Einfluss (0,151000 MHz, 10 V oder V/m)	± 0,2 % 1) (typisch)
Temperatureinfluss Vergleichsstelle 4) (T/C)	±0,5°C/25°C	Langzeitstabilität	±0,1 % ¹⁾ /Jahr
Gehäuse			
Gewicht	50 g	Anschluss (Draht oder Litze)	≤ 1,5 mm², AWG 16
Material / Entzündbarkeit (UL)	PC + ABS / V0, Polyamid / V2	Montage (Schiene mit Montagekit)	DIN B oder größer
Schutzart, Gehäuse / Anschlussklemmen	IP 50 / IP 10	Masse (Durchmesser/Höhe)	44 / 25 mm

¹⁾ Bezogen auf die Eingangsspanne • ²⁾ Bei gleichem Leitungswiderstand • ³⁾ Bei einer Nullpunktverschiebung größer als 100 % der Eingangsspanne wird pro 100 % Nullpunktverschiebung 0,125 % der Eingangsspanne / 25 °C dazu addiert • ³⁾ Referenztemperatur 23 °C • ³⁾ Höhere Last ist erlaubt mit höherer Versorgungsspannung (siehe Bürdendiagramm). Minimum sind 250 Ω zur HART-Kommunikätion erforderlich • ⁵⁾ Mit 250 Ω in der Ausgangsschleffe ist mindesten 1 15,75 VDC (MSO-H) qofer 17,75 VDC (MSO-HX) erforderlich • ⁷⁾ 105 °C verfügbar auf Anfrage • ⁸⁾ −1,5 s mit aktiviertem Fühlerbruchsignal • ⁹⁾ Für detaillierte Information über zulässige Noise verweisen wir auf die HART-Spezifikation HCF-SPEC-54

Widerstandsthermometer Thermoemelent Eingangsklemmen für: AE,B,E,J,K,L,N,R,S,T,U Pt100, Pt1000, Ni100, Ni1000 Pt100 Pt100 oder kundenspezifisch 3-Leiteranschluss 4-Leiteranschluss 3-Leiteranschluss Widerstandsthermometer Differenztemperatur T1>T2 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Potentiometer 1 2 3 4 Thermelement Spannung (mV) SmartSense SmartSense Leitung Leitung T₂ Zulässige Bürde RI ast in O 0 0 2000 1750 mV Potentiometer 1500 4-Leiteranschluss 3-Leiteranschluss Millivolt 1250 В 1 2 3 4 1 2 3 1 2 3 4 1000 anschluss 750 500 В 250 Modem-RLast (Bürde) anschluss 0 18 10 22 26 30 38 Versorgungsspannung U (V DC) **SmartSense** RLast = (U - 10) / 0.023 MESO-H (MESO-HX) RLast = (U - 12) / 0,023 2 3 Versorgungsspannung MESO-HX, Cenelec 10...42 (12...30) VDC [EEx ia] IIC T4, T5, T6 Eingang (Sensor) Ausgang (Schleife) SmartSense = \le 30 VDC = \le 100 mA = \le 0,9 W = \le 1 mH = \le 1 nF Uo = ≤ 30 VDC Io = ≤ 100 mA Ui Ii = nicht spezifiziert Pi = ≤ 1,4 mH Li = ≤ 65 nF Ci

Tel.: 03303 / 504066

Fax: 03303 / 504068