

AC, DC and AC+DC TRMS Clamp Multimeters

For Professional Use

- For electricians, clamp multimeters are ideal tools for any work in the field. Simple to use, they offer all the necessary functions in a single, compact solution.
- The F200 Series meets the needs of selfemployed electricians and small and medium-sized business and industries in the electrical sector.
- For medium and high-power work, the F400 and F600 Series provide maximum safety whatever the measurement conditions and type of installation.
- With its large clamping diameter and current measurements up to $3,000 \mathrm{~A}$, the F600 Series is perfect for working on electrical power distribution and transmission applications.

Safe and Robust

$1,000 \mathrm{~V}$ CAT IV, an unprecedented level of safety for clamp multimeters!
Users can be sure of working in total safety and in compliance with the applicable standards.
The instruments' IP54 protection safeguards them against dust, in particular, thus guaranteeing that safety is maintained over time.
The mechanical design of these clamps enables them to pass the standard test for falls from a height of 2 metres.

Performance

All the clamps in the F200, F400 and F600 Series benefit from a fast 12-bit TRMS digital acquisition system offering high measurement accuracy.
Thanks to their large bandwidth and high crest factor, these clamps provide accurate measurements whatever the type of signal.

Ergonomics

The whole range has been designed for one-handed use, even when wearing protective gloves.
For maximum efficiency, each type of measurement has its own specific switch position.
The " 1 key, 1 function" concept makes it even simpler to use.
In addition, all these clamps are equipped with automatic detection of the type of signal (AC or DC) for current, voltage and power measurements.

Various clamping
diameters up to
60 mm are available to ensure comfortable measurements.

The rotary switch is fitted with special moulding for excellent grip even with protective gloves.

The casing is equipped with a shockproof band to protect against falls.

The backlit LCD screen is particularly comfortable to read, offering contrasts and a viewing angle which are unprecedented for this type of instrument (up to 10,000 counts).

The Quality of TRMS Measurements, Whatever the Type of Signal

A range offering unprecedented analytical and diagnostic functions!

Peak+ and Peak-

Calculated over a period of 1 ms , the Peak+ and Peak- values help to characterize the distortion affecting the signal measured.
For example, they may reveal variations in the installation's behaviour or even malfunctions.

THD and Harmonics

When seeking the causes of a malfunction, knowledge of the overall signal distortion (THD_{r} or THD_{f}) or frequential distortion (harmonic analysis) helps you to identify the precise corrective solution required: filtering, oversizing, etc.
Harmonic analysis also contributes to fire prevention.

TRMS Version of Min and Max!

The Min and Max are TRMS values calculated over a duration of up to 100 ms .
This feature is particularly useful for sizing an installation, the diameter of a power cable, a thermal protection device, etc.

$\Delta R E L$,

for Quick Evaluation

Comparison with a reference quantity is a quick way of evaluating and analysing your results. A signal's variations can be measured differentially or relatively. The first method indicates the difference between the value of reference and the value measured. The second method indicates the proportion.
The \triangle REL function can be applied to any type of measurement and can be used jointly with the Min, Max and Peak functions.

INNOVATION FROM CHAUVIN ARNOUX

True

The True function makes it easy to analyse both the inrush of a single motor and the inrush of a set of machines in operation.
The clamp automatically determines the type of signal and the level of current in the installation and then adapts the algorithm and measurement mode to capture the expected overcurrent.

Indeed, correct sizing of electrical installations in terms of both the conductors and the protective systems implemented is a recurrent problem.
Overcurrents usually occur when an installation or a machine is started up or when machinery is subjected to heavy loads.
The True
function enables you to size the installation correctly.

Choose Your Clamp Multimeter

This 11-model range of clamp multimeters meets all your needs in the field.

1/ MEASUREMENT RANGE

3 series identifiable by their first digit for 3 measurement ranges

- The F200 Series for currents up to $600 A_{A C} / 900 A_{D C}$
- The F400 Series for average currents up to 1,000 $A_{A C} / 1,500 A_{D C}$
- The F600 Series for high currents up to 2,000 $A_{A C} / 3,000 A_{D C}$

All the models also innovate by proposing as standard features:

- AC and DC voltage measurement up to $1,000 \mathrm{~V}$
- Resistance and audible continuity
- Min / Max analysis
- True lan Rap overcurrent measurement

2/ TYPE CURRENT \& FUNCTIONS

Each series comprises 3 or 4 models.
The last digit in each clamp's name corresponds to different applications and levels of analysis.
So the F201, F401 and F601 clamps, for example, offer the same functions but with different measurement ranges.

$F 200$	$F 4,00$	F600
$600 \mathrm{AAC} / 900 \mathrm{ADC}$	$1,000 \mathrm{AAC} / 1,500 \mathrm{ADC}$	$2,000 \mathrm{AAC} / 3,000 \mathrm{ADC}$
Voltage up to $\mathbf{1 , 0 0 0} \mathrm{V}$	Resistance, audible continuity	

F201 / F401 / F601

AC Applications

All the basics for mains-powered installations and equipment.

F203 / F403 / F603
"AC or DC" Applications

DC current
Temperature
Adapter function Δ REL

F205 / F405 / F605
"Mixed AC+DC" Applications + Testing
\& Maintenance

Power values
THD
Δ REL
Min/Max/Peak
Phase rotation

F407 / F607

"Mixed AC+DC" Applications + Analysis \& Surveys

Power values
Harmonics
Ripple
Recording
PC software

The Adapter function helps to extend the instrument's possibilities through the use of measurement probes (luxmeter, Infrared temperature sensor, tachometer, etc.) with voltage output (AC or DC). A cleverly-designed system allows users to read the quantity measured directly.

Phase rotation

To determine the phase order, a "2-wire" microprocessorbased measurement system avoids the constraints and faults linked to instruments equipped with resistive or capacitive technologies when using protective accessories (gloves, mats, etc.) or isolating transformers.

Ripple

The ripple is a parameter that enables you to assess the quality of the smoothing on currents which are rectified and then smoothed. The lower the ripple factor, the greater the efficiency of the smoothing.
If switching power supplies are involved, the voltage supplied includes residual ripple, particularly at high frequency.
This ripple is harmful for electronic equipment, so it should be kept to a minimum.

F200 SERIE

	$=200$ serie
Clamping diam.	34 mm
Current	600 AAC or AC+DC
	900 ADC
Domain	600 V CAT IV
of use	1,000 V CAT III

The F200 clamps are ideal for low-power or medium-power low-voltage applications: maintenance of tertiary or industrial electrical installations or installed machines, power supply diagnostics and/or sizing, commissioning of air-conditioning and heating systems, work on electric vehicles, etc.

	F400
Clamping diam.	48 mm
Current	$1,000 \mathrm{AAC}$ or $\mathrm{AC}+\mathrm{DC}$
	$1,500 \mathrm{ADC}$
Domain	$1,000 \mathrm{~V}$ CAT IV
of use	$1,000 \mathrm{~V}$ CAT III

The F400 Series is designed for medium-power low-voltage applications in sectors such as LV electricity production and distribution, industry, railways, etc. It is also suitable for lift/elevator technicians and other lifting and transport specialists.
The main applications for the clamps in this series are maintenance, testing, monitoring, diagnostics and connection.

The F600 Series is designed for the high-power LV market in sectors such as electrical power distribution, chemical and petrochemical industries, metallurgy, transport, etc.
Applications: maintenance, testing, monitoring, diagnostics, sizing, connection, etc.

Model	F200 SERNIES			F400 SERIES				F600 SERNIES							
	F201	F203	F205	F401	F403	F405	F407	F601	F603	F605	F607				
Clamping diameter	34 mm			48 mm				60 mm							
Display	LCD	Backlit LCD		Backlit LCD				Backlit LCD							
Resolution	6,000 counts			10,000 counts				10,000 counts							
Number of values displayed	1 1			3				1			3				
Type of acquisition	$\begin{aligned} & \text { TRMS } \\ & {[A C]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { TRMS } \\ & {[A C] D C} \\ & \hline \end{aligned}$	$\begin{gathered} \text { TRMS } \\ {[A C, A C+D C] / D C} \end{gathered}$	$\begin{aligned} & \text { TRMS } \\ & {[A C]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { TRMS } \\ {[\mathrm{AC}] \mathrm{DC}} \end{gathered}$	$\begin{gathered} \text { TRMS } \\ {[A C, A C+D C] D C} \end{gathered}$		$\begin{aligned} & \text { TRMS } \\ & {[A C]} \end{aligned}$	$\begin{gathered} \text { TRMS } \\ {[\mathrm{AC}] / \mathrm{DC}} \end{gathered}$	$\begin{gathered} \text { TRMS } \\ {[A C, A C+D C] / D C} \end{gathered}$					
Autorange	Yes			Yes				Yes							
Automatic AC / DC detection	-		Yes	Yes				Yes							
A AC	0.25 to 600 A (900 A peak)			0.25 to 1,000 A (1,500 A peak)				0.25 to 2,000 A (3,000 A peak)							
A DC	- 0.25 to 900 A			0.25 to 1500 A				0.25 to 3,000 A							
A AC+DC			$\begin{aligned} & 0.25 \text { to } 600 \mathrm{~A} \\ & (900 \mathrm{~A} \text { peak) } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.25 \text { to } 1,000 \mathrm{~A} \\ & (1,500 \mathrm{~A} \text { peak }) \end{aligned}$		$\begin{aligned} & 0.25 \text { to } 2,000 \mathrm{~A} \\ & (3,000 \mathrm{~A} \text { peak) } \end{aligned}$							
Best accuracy	$1 \% \mathrm{~L} .+3$ cts			$1 \% \mathrm{~L}+3$ cts				$1 \% \mathrm{~L} .+3 \mathrm{cts}$							
V AC	0.15 to 1,000 V			0.15 to 1,000 V				0.15 to 1,000 V							
V DC	0.15 to 1,000 V			0.15 to 1,000 V				0.15 to 1,000 V							
V AC+DC	-		0.15 to 1,000 V	-		0.15 to 1,000 V				0.15 to 1,000 V					
Best accuracy	-		1% reading +3 cts	-		1% reading +3 cts		-		1% reading +3 cts					
Hz	Current: $5,0 \mathrm{~Hz}$ to $3,000 \mathrm{~Hz}$ Voltage: $5,0 \mathrm{~Hz}$ to 20.00 kHz			Current: $5,0 \mathrm{~Hz}$ to $2,000 \mathrm{~Hz}$ Voltage: $5,0 \mathrm{~Hz}$ to 20.00 kHz				Current: $5,0 \mathrm{~Hz}$ to $1,000 \mathrm{~Hz}$ Voltage: $5,0 \mathrm{~Hz}$ to 20.00 kHz							
Ohm	0.1Ω to $59.99 \mathrm{k} \Omega$			0.1Ω to $99.99 \mathrm{k} \Omega$				0.1Ω to $99.99 \mathrm{k} \Omega$							
Open-circuit voltage	$\leq 8 \mathrm{~V}$			$\leq 8 \mathrm{~V}$				$\leq 8 \mathrm{~V}$							
Measurement current	$\leq 680 \mu \mathrm{~A}$			$\leq 680 \mu \mathrm{~A}$				$\leq 680 \mu \mathrm{~A}$							
Audible continuity	Yes			Yes				Yes							
Continuity threshold	adjustable from 1 to 599Ω			adjustable from 1 to 999Ω			40Ω	adjustable from 1 to 999Ω			40Ω				
Diode test (semiconductor junction)	Yes			Yes			No	Yes			No				
Temperature (K type)	$\begin{aligned} & { }^{\circ} \mathrm{C} \mathrm{C}:-60.0 \text { to }+1,000.0^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{F}:-76,0 \text { to }+1,832{ }^{\circ} \mathrm{F} \\ & \hline \end{aligned}$		-	$\begin{aligned} & { }^{\circ} \mathrm{C}:-60.0 \text { to }+1,000.0^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{F}:-76,0 \text { to }+1,832{ }^{\circ} \mathrm{F} \\ & \hline \end{aligned}$				$\begin{aligned} & { }^{\circ} \mathrm{C}:-60.0 \text { to }+1,000.0{ }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C}:-76,0 \text { to }+1,832{ }^{\circ} \mathrm{F} \\ & \hline \end{aligned}$							
Single-phase and total three-phase power values	Yes			Yes				Yes							
Active power	1 W to 600 kW			-		1 W to 1,000 kW		-		1 W to 2,000 kW					
Reactive power	1 var to 600 kvar			-		1 var to 1,000 kvar		-		1 var to 2,000 kvar					
Apparent power	1 VA to 600 kVA			-		1 VA to 1,000 kVA		-		1 VA to 2,000 kVA					
FP / DPF	Yes/ No			-		Yes/No	Yes/Yes			Yes/No	Yes/Yes				
Harmonic analysis	- \quad Yes			-		Yes	Yes	-		Yes	Yes				
THD $/$ / ${ }_{\text {dH }} \mathrm{D}_{\mathrm{r}}$	- Yes/Yes			-		Yes/Yes	Yes/Yes	-		Yes/Yes	Yes/Yes				
Frequency analysis	- ${ }^{\text {- }}$			-		No	25th order	-		No	25th order				
Phase rotation (2-wire method)	- \quad Yes			Yes				-		Yes	-				
Functions $\quad \square \quad{ }^{\text {P }}$															
True InRush (Overcurrent measurement)	Yes							Yes				Yes			
Motor inrush	Yes			Yes				Yes							
Load change	Yes			Yes				Yes							
Hold	Yes			Yes				Yes							
Min. / Max.	Yes			Yes				Yes							
Peak+/ Peak-	- \quad Yes			- Yes				Yes							
RELative $\Delta \mathrm{X}$ / Differential $\triangle \mathrm{X} / \mathrm{X}$ (\%)	Yes/Yes			$\frac{\text { Yes/Yes }}{\text { Yes }}$				Yes/Yes							
Auto Power Off	Yes							Yes							
Data recording	-			Yes				-			Yes				
Communication interface	-			- 1000 V CAT IV \& CAT III							Bluetooth				
Electrical safety as per IEC 61010	600 V CAT IV														
Power supply	$1 \times 9 \mathrm{~V}$ LF22			$\frac{4 \times 1.5 \mathrm{~V} \text { AA }}{} 92 \times 272 \times 41 \mathrm{~mm} / 600 \mathrm{~g}$				$\frac{1,000 \mathrm{~V} \text { CAT IV \& CAT III }}{4 \times 1.5 \mathrm{~V} \mathrm{AA}}$							
Dimensions \& weight	$78 \times 222 \times 42 \mathrm{~mm} / 340 \mathrm{~g}$								$111 \times 296 \times$	mm/ 640					

