

SIEMENS SITRANS F

Coriolis-Durchflussmessgeräte SIFLOW FC070 mit SIMATIC S7

Betriebsanleitung

Coriolis-Durchfluss-Messumformer zum Einsatz mit SITRANS F C-Messaufnehmertypen MASS 2100, FCS200, FC300 und MC2

05/2012 A5E02665536-04

ICS Schneider Messtechnik GmbH Briesestraße 59 D-16562 Hohen Neuendorf / OT Bergfelde

Tel.: 03303 / 50 40 66 Fax: 03303 / 50 40 68

info@ics-schneider.de www.ics-schneider.de

1
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15
16
Α
В
C
D
Ε
F

Rechtliche Hinweise

Warnhinweiskonzept

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

GEFAHR

bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

WARNUNG

bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

/VORSICHT

bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung **qualifiziertem Personal** gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Bestimmungsgemäßer Gebrauch von Siemens-Produkten

Beachten Sie Folgendes:

WARNUNG

Siemens-Produkte dürfen nur für die im Katalog und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von Siemens empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Alle mit dem Schutzrechtsvermerk ® gekennzeichneten Bezeichnungen sind eingetragene Marken der Siemens AG. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Inhaltsverzeichnis

1	Einleitu	ung	9
	1.1	Lesen der Betriebsanleitung	9
	1.2	Lieferumfang	11
	1.3	Geräteidentifikation	12
	1.4	Verlauf	12
	1.5	Weitere Informationen	13
2	Sicher	heitshinweise	
	2.1	Allgemeine Sicherheitsanweisungen	15
	2.2	Systemerweiterungen	15
	2.3	Installation in explosionsgefährdeten Bereichen	16
	2.4	Informationen zum Explosionsschutz	18
	2.5	Zertifikate	19
3	Beschi	reibung	
	3.1	Benutzung in Automationsumgebung	21
	3.2	Konzept	26
	3.3	Leistungsmerkmale	27
	3.4	Funktionsweise	29
4	Hardwa	are einbauen und ausbauen	
	4.1	Einbau und Ausbau des SENSORPROM	32
	4.2 4.2.1 4.2.2 4 2 3	DIP-Schalter MODBUS Adressschalter MODBUS Slave-Adresse Schreibschutz	35
	4.3	Montage auf der Profilschiene	36
5	Anschl	ließen	37
•	5.1	Allgemeine Anweisungen.	
	5.2	Allgemeine Sicherheitshinweise	
	5.3	Montage der SIFLOW FC070 Ex CT	
	5.4	Anschließen von Nicht-Ex-Baugruppen	41
	5.5	Anschließen von Ex-Baugruppen	43
	5.6	Abschirmung des Messaufnehmerkabels	46
	5.7	Beispiele für Anschlüsse	47
		•	

	5.7.1 5.7.2 5.7.3	Anschluss an einen MODBUS Master über RS485 Anschluss an einen MODBUS Master über RS232 Anschließen von Digitaleingang, Digitalausgängen und Stromversorgung	
	5.8	Teiltest der Funktionalität	49
6	Softwa	re-Installation	51
	6.1	Installation der S7 Softwarebibliothek	51
	6.2	Installation des S7 Hardware Support Package	51
	6.3	PDM Driver Installation	54
7	Progra	mmierung in SIMATIC S7	59
	7.1	SIFLOW FC070 im zyklischen S7 Programm	59
	7.2	Funktionen des Funktionsblocks S7 SIFL_FC (FB95)	60
	7.3	Der Datenblock DB_FLOW_PARA	61
	7.4	Funktionen des Datenblocks DB_FLOW_VEC	67
	7.5	Datensätze im Datenbaustein DB_FLOW_PARA	68
	7.6	Weitere Parameter im Datenbaustein DB_FLOW_PARA	69
	7.7 7.7.1 7.7.2 7.7.3	Beispiele Prozesswerte für Massendurchfluss und Totalizer 2 auslesen Totalizer 2 zurücksetzen Batchbetrieb einrichten	
8	Inbetrie	ebnahme mit SIMATIC PDM	
	8.1	Allgemeine Anweisungen	77
	8.2	Schritt 1: Lesen der Parameter von der SIFLOW FC070	78
	8.3	Schritt 2: Einstellen Grundparameter	78
	8.4	Schritt 3: Systemoptimierung	79
	8.5	Schritt 4: Ansicht der Prozessvariablen	81
9	Inbetrie	ebnahme mit SIMATIC S7	83
	9.1	Einstellung der Grundparameter in HW-Konfig	83
	9.2 9.2.1 9.2.2 9.2.3 9.2.4	Schrittanleitung für die Inbetriebnahme mit S7 Schritt 1: Parameter in DB17 (DB_FLOW_PARA) einlesen Schritt 2: Einstellen Grundparameter Schritt 3: Systemoptimierung Schritt 4: System betriebsbereit	85 87 89 91 93
10	Eichpfl	ichtiger Verkehr	
	10.1	Tatsächliche SIFLOW-Ausführung ermitteln	99
	10.2	Schrittanleitung für die Konfiguration von SIFLOW CT-Funktionen	99
	10.3	Konfiguration der CT-Ausführung	100
	10.4	Schreibzugriff aktivieren	100
	10.5	Hardware- und Softwarevoraussetzungen	101

	10.6	Installation des SIFLOW CT OCX	102
	10.7	Entfernen des SIFLOW CT OCX	102
	10.8	Kompatibilitätsvorausssetzungen	103
	10.9	Unterstützte Geräte	103
	10.10	Layout des SIFLOW CT OCX	104
	10.11	Fehlercodes	105
	10.12	Unterstützte Sprachen	106
	10.13	Finschränkungen	
	10.14 10.14.1 10.14.2	Projektierung und Betrieb des SIFLOW CT OCX Erstellen des HMI-Projekts Einrichten der Verbindung zur Steuerung.	106 106
	10.14.3 10.14.4 10.14.5 10.14.6	Einrichten der Variablen zur Darstellung von Eingangsdaten für OCX-Lesevorgang Einrichten der Variablen zur Darstellung von Ausgangsdaten für OCX-Schreibvorgang Erstellen des HMI-Projekts und Transferieren des Projekts an das Bediengerät Parametrieren von SIFLOW FC070 Ex CT mit SIMATIC PDM Daten Jacon zwischen dem SIELOW CT OCX und der SIELOW Ex Bougruppe	109 111 112 113
	10.14.7	Schreibzugriff deaktivieren	11/
	10.16 10.16.1 10.16.2	Ändern von Parametern im Schreibschutzmodus mit SIMATIC PDM Ändern von Parametern im Schreibschutzmodus aus S7 bei Massedurchfluss null Lesen der aktuellen Hardware- und Firmwareversion aus SIFLOW	115 116 116
	10.17	CT-Parameter	117
	10.18	Überprüfen, dass SIFLOW sich im CT-Modus befindet	117
11	Funktion	en	119
	11.1	Nullpunkteinstellung	119
	11.2	Schleichmengenunterdrückung	121
	11.3	Leerrohrerkennung	121
	11.4	Rauschfilter	122
	11.5	Skalierung und Einheiten-Konvertierung	123
	11.6	Grenzwertüberwachung	125
	11.7	Simulation	126
	11.8 11.8.1	Ausgang Digitalausgang	129 129
	11.8.3	Frequenzausgang	131
	11.8.4	Phasenverschiebungsausgang	132
	11.8.5 11.8.6	Datch-Ausgang Zweistufiger Batch-Ausgang	132 135
	11.8.7	Ausgänge einfrieren und erzwingen	136
	11.9 11.9.1	Eingang Digitaleingang	136 136
	11.10	Prozessinformation	137

	11.10.1 11.10.2 11.10.3	Prozesswerte Fraktion Summenzähler	137 138 139
	11.11	Datum und Uhrzeit	142
	11.12	Serviceinformationen	143
12	Alarm-, F	-ehler- und Systemmeldungen	147
	12.1	Meldungen und Diagnosen	147
	12.2	Alarmverhalten	149
	12.3	Diagnosedaten	150
	12.4	Systemdiagnosedaten Bytes 0 bis 3	153
	12.5	Baugruppenspezifische Diagnosedaten: Bytes 4 bis 7	154
	12.6	Messaufnehmer- und prozessspezifische Diagnosedaten: Bytes 8 bis 11	155
	12.7	Fehlermeldungen der SIFLOW FC070	157
	12.7.1	Übersicht Fehlertypen	157
	12.7.2	Daten- und Betriebsfehler	156 162
	12.7.4	Fehlerinformation im Ausgangsparameter ERR_MSG_C oder CMD_ERR_C	169
	12.8	Systemstatusinformationen	170
	12.9	Slave-Diagnose	172
13	Instandh	altung und Wartung	175
	13.1	Wartung	175
	13.2	Gerätereparatur	175
	13.3	Technischer Support	176
	13.4	Rücksendeverfahren	176
14	Diagnos	e und Fehlerbehebung	179
	14.1	LED Statusanzeige	179
	14.2	Diagnose mit LED	180
	14.3	Diagnose mit PDM	182
	14.4	Fehlerbehebungsmessaufnehmer und schwankende Messwerte	183
	14.4.1	Allgemeine Informationen	183
	14.4.2	Schritt 1: Prufung der Anwendung	184
	14.4.3	Schritt 3. Berechnung des Messfehlers	185
	14.4.5	Schritt 4: Verbesserung der Anwendung	187
15	Techniso	he Daten	191
	15.1	MODBUS-Kommunikation	193
	15.2	Blockschaltbild SIFLOW FC070	194
	15.3	Blockschaltbild SIFLOW FC070 Ex CT	194
	15.4	Auslösen von Befehlen über Digitaleingang	195

	15.5	Ausgangskenndaten	196
16	Ersatzte	eile/Zubehör	201
	16.1	Bestellen	201
	16.2	Bestelldaten	201
Α	SIFLOV	V-Befehle	203
	A.1	SIFLOW-Befehle	203
В	SIFLOV	V Einheiten	205
С	Datensä	itze	211
	C.1	DR2 Einheiten der Prozesswerte (R/W)	212
	C.2	DR3 Grundeinstellungen (R/W)	215
	C.3	DR4 Summenzähler (R/W)	219
	C.4	DR5 Digitalausgang (R/W)	221
	C.5	DR6 Digitaleingang (R/W)	225
	C.6	DR7 Schnittstellenparameter (R/W)	226
	C.7	DR8 Tag/Uhrzeit (R/W)	229
	C.8	DR9 Messaufnehmereigenschaften (R/W)	230
	C.9	DR10 Simulationsdaten (R/W)	233
	C.10	DR11 Standardeinstellungen Prozesswert (R/W)	236
	C.11	DR12 Grenzwerte Standardeinstellungen (R/W)	237
	C.12	DR30 Prozesswert (R)	241
	C.13	DR31 Serviceinformationen (R)	242
	C.14	DR32-34 Messumformer-, Messaufnehmer- und Kundendaten (R)	243
	C.15	DR35-36 MODBUS Slave Identifikationsdaten und Serviceinformationen (R)	246
	C.16	DR37 CT-Werte (R)	248
	C.17	CT-Parameter von DR39 (R/W)	249
	C.18	DR181 Diagnosepuffer (R)	250
D	CT-Para	ameter	253
	D.1	Redundanzimpulsausgang	253
	D.2	Redundanzfrequenzausgang	255
	D.3	OCX	257
Е	ESD-Ri	chtlinien	259
F	Abkürzu	Ingen	261
	Glossar		265
	Index		271

Inhaltsverzeichnis

Einleitung

1

Diese Betriebsanleitung gilt für die Funktionsbaugruppen SIFLOW FC070 und SIFLOW FC070 Ex CT. Diese können im Standalone-Modus eingesetzt oder zum Anschluss von industriellen Durchflussmessgeräten an ein S7-Automatisierungssystem verwendet werden.

Die Betriebsanleitung dient als Nachschlagewerk für Informationen zu Betrieb, Funktionen und technischen Daten der Funktionsbaugruppe SIFLOW FC070 / SIFLOW FC070 Ex CT.

Sie wendet sich sowohl an Programmierer und Mitarbeiter mit Prüf- und Fehlerbehebungsaufgaben, die die Funktionsbaugruppe in Betrieb nehmen und sie an andere Einheiten anschließen (Automatisierungssysteme, Programmiergeräte), als auch an Kundendienst- und Wartungspersonal, das Systemerweiterungen vornimmt oder Fehleranalysen ausführt.

Hinweis

Die Betriebsanleitung enthält die Beschreibung der aktuellen Funktionsbaugruppe. Für neue Funktionsbaugruppen oder Funktionsbaugruppen einer neueren Version behalten wir uns das Recht vor, die aktuellsten Informationen im Internet zu veröffentlichen.

1.1 Lesen der Betriebsanleitung

Erforderliche Grundkenntnisse

Um die Betriebsanleitung verstehen und damit arbeiten zu können, benötigen Sie allgemeine Kenntnisse der Automatisierungstechnologie. Außerdem ist Erfahrung im Umgang mit Messaufnehmern zur Durchflussmessung hilfreich.

Sie sollten das System kennen, in das Sie die Funktionsbaugruppe SIFLOW FC070 integrieren möchten. Je nach Anwendung kann Folgendes erforderlich sein:

- Kenntnisse der grundlegenden S7-Software
- Kenntnis des Konfigurationstools SIMATIC PDM.

Die Einbindung von Funktionsbaugruppen in ein S7-300- oder ET 200M-System (d. h. Montage und Verkabelung) wird in den jeweiligen Betriebsanleitungen zu diesen Systemen beschrieben.

Hinweis

Einhaltung der Installationsrichtlinien

Die Installationsrichtlinien und Sicherheitsanweisungen in diesen Unterlagen müssen bei Inbetriebnahme und Betrieb befolgt werden. 1.1 Lesen der Betriebsanleitung

Inhalt der einzelnen Kapitel

- "Sicherheitshinweise" (Seite 15) beinhaltet Anweisungen zur sicheren Anwendung. Der Benutzer sollte diese Anweisung sorgfältig lesen, falls SIFLOW FC070 in gefährlichen oder explosionsgefährdeten Bereichen installiert wird.
- "Beschreibung" (Seite 21) beinhaltet die grundlegende Beschreibung von SIFLOW FC070 und des Coriolis-Messprinzips. Außerdem wird in diesem Kapitel auch beschrieben, wie SIFLOW FC070 in Automatisierungsanwendungen integriert werden kann.

Dieses Kapitel sollten alle Benutzer lesen, um Grundkenntnisse über die Baugruppe zu besitzen.

- "Funktionen" (Seite 119) bietet detailgenaue Beschreibungen aller von SIFLOW FC070 gebotenen Funktionen.
 Hier kann der Benutzer sich einen Überblick über die Funktionen der Baugruppe verschaffen und genauere Informationen finden.
- "Hardware einbauen und ausbauen" (Seite 31) beschreibt schrittweise den Einbau der SIFLOW FC070, d. h. die SENSORPROM-Installation, die Einstellung der Dip-Schalter und die Montage auf der Schiene.
 Alle Benutzer sollten dieses Kapitel lesen, bevor sie die Hardware installieren.
- "Anschließen" (Seite 37) beschreibt, wie SIFLOW FC070 an Messaufnehmer, Ein-/Ausgänge und Kommunikation angeschlossen werden muss. Alle Benutzer sollten dieses Kapitel lesen, bevor sie die Baugruppe verdrahten.
- "Softwareinstallation" (Seite 51) enthält eine Installationsanleitung für die mit SIFLOW FC070 ausgelieferte Software, d. h. die S7-Softwarebibliothek, das S7 HW Support Package und PDM Driver. Dieses Kapitel sollten alle Benutzer lesen.
- "Programmierung in SIMATIC S7" (Seite 59) beschreibt, wie die Kommunikation mit SIFLOW FC070 mittels der S7-Funktionsbausteine und -Datenbausteine, die mit der Baugruppe geliefert werden, erfolgt. Alle Benutzer von S7 sollten dieses Kapitel lesen.
- "Inbetriebnahme mit SIMATIC PDM" (Seite 77) beschreibt, wie SIFLOW FC070 über SIMATIC PDM in Betrieb genommen wird.
 Es ist empfehlenswert, SIMATIC PDM für die Inbetriebnahme und Diagnosezwecke einzusetzen. Dieses Kapitel sollten alle Benutzer lesen, welche die Baugruppe mit PDM in Betrieb nehmen wollen und mit PDM nicht vertraut sind.
- "Inbetriebnahme mit SIMATIC S7" (Seite 83) beschreibt anhand von Beispielen, wie SIFLOW FC070 mithilfe von S7-SIFLOW-Funktionsbausteinen in Betrieb genommen wird.

Das Kapitel bezieht sich auf einen PLC-Beispielcode aus dem SIFLOW-Starterpaket. Der Code befindet sich auf der mit dem Produkt ausgelieferten CD.

Dieses Kapitel sollten alle Benutzer lesen, welche die Baugruppe mit SIMATIC S7 in Betrieb nehmen wollen.

 "Eichpflichtiger Verkehr" (Seite 99) beschreibt das Einrichten einer CT-Anwendung entweder über den Digitalausgang oder mithilfe der ActiveX-Komponente OCX von SIFLOW CT.

Dieses Kapitel sollten alle Benutzer lesen, die das Gerät in einer Anwendung im eichpflichtigen Verkehr einsetzen wollen.

- "Alarm-, Fehler- und Systemmeldungen" (Seite 147) beschreibt den Aufbau von Alarm-, Fehler- und Systemmeldungen beim Einsatz des Geräts mit SIMATIC S7.
 Benutzer sollten dieses Kapitel lesen, um die Diagnosefunktion in PLC programmieren zu können.
- "Diagnose und Fehlerbehebung" (Seite 179) beschreibt, wie der Benutzer Fehler bei der SIFLOW FC070 mithilfe von SIMATIC PDM und der LED-Anzeige an der Baugruppe diagnostizieren und beheben kann.
- "Technische Daten" (Seite 191) enthält detaillierte technische Informationen zur SIFLOW FC070 und zu Coriolis-Messaufnehmern.
- "Anhang A" (Seite 203) behandelt die von der SIFLOW FC070 unterstützten Befehle.
- "Anhang B" (Seite 205) listet alle von der SIFLOW FC070 unterstützten Engineering-Einheiten auf.
- "Anhang C" (Seite 211) listet alle von der SIFLOW FC070 unterstützten Datensätze auf.
- "Anhang D" (Seite 253) listet alle Parameter von Anwendungen für den eichpflichtigen Verkehr auf.

Für dieses Dokument gelten die nachstehenden Regeln

Die Schreibweise der Parameter von SIFLOW FC070 lautet:

[Datenaufzeichnungsnummer (Großschreibung)]: [Parametername].
 Zum Beispiel bedeutet:
 DR3: Zero_adjust_time "Nullpunktabgleichszeit"-Parameter in Datensatz Nummer 3.

Namen in Großbuchstaben stehen für Bits (z. B. Befehls-, Status- oder Fehlerbits) wie im Folgenden:

- PE_ZEROADJ_OFFSET_LIMIT: Prozessfehler(PE)-Bit.
- ST_ZERO_ADJUST_OFFSET_LIMIT_EXCEEDED: Status(ST)-Bit.
- CMD_PARA_CHANGE_ACK: Befehls(CMD)-Bit.

1.2 Lieferumfang

Lieferumfang

Im Lieferumfang enthalten sind:

- Funktionsbaugruppe SIFLOW FC070 / SIFLOW FC070 Ex CT
- CD mit Hardware Support Package (HSP), Funktionsbausteinen und Datenbausteinen, GSD und EDD Dateien, Online Hilfen, Anwenderdokumentation, Getting Started Demo-Software und CE-Zulassung
- P-Bus-Steckverbinder für SIMATIC-Bus
- Beipackmaterial (Adernendhülsen und Schrumpfschlauch für Anschlussarbeiten)

1.3 Geräteidentifikation

1.3 Geräteidentifikation

Teileinspektion

- 1. Überprüfen Sie den Aufnehmer auf eventuelle mechanische Beschädigungen aufgrund unsachgemäßer Handhabung während des Transports. Alle Schadenersatzansprüche sind unverzüglich gegenüber dem Transporteur geltend zu machen.
- 2. Vergewissern Sie sich, dass der Lieferumfang und die Angaben auf dem Typenschild den Bestellangaben entsprechen.

Identifikation

1.4 Verlauf

Die folgende Tabelle zeigt die wichtigsten Änderungen in der Dokumentation gegenüber den jeweils früheren Ausgaben.

Ausgabe	Anmerkung	
09/2006	Erste Ausgabe des SIFLOW FC070 Systemhandbuchs	
	Siehe A5E00924779 (http://support.automation.siemens.com/WW/view/en/24478991)	
06/2008	Erste Ausgabe von SIFLOW FC070 mit SIMATIC S7	
	• Alle Teile zur Konfiguration unter PCS7, MODBUS und PROFIBUS wurden entfernt.	
	Eine Schrittanleitung zur Inbetriebnahme wurde hinzugefügt.	
	Informationen zur Fehlerbehebung wurden hinzugefügt.	

1.5 Weitere Informationen

Ausgabe	Anmerkung	
04/2011	Zweite Ausgabe von SIFLOW FC070 mit SIMATIC S7	
	Beschreibung einer verschlüsselten Kommunikation zwischen SIFLOW FC070 und Bedienfeld (OCX) wurde hinzugefügt	
	Der Abschnitt zum eichpflichtigen Verkehr (CT) wurde hinzugefügt	
03/2012	Dritte Ausgabe von SIFLOW FC070 mit SIMATIC S7	
	Update der Zertifizierungsstandards für Ex-Zone 2.	

1.5 Weitere Informationen

Produktinformationen im Internet

Die Betriebsanleitung ist auf der mit dem Gerät ausgelieferten CD-ROM enthalten und außerdem im Internet auf der Siemens-Homepage verfügbar. Hier finden Sie auch weitere Informationen zum Produktspektrum der SITRANS F Durchflussmessgeräte:

Durchfluss-Dokumentation (http://www.siemens.com/flowdocumentation)

Ansprechpartner weltweit

Sollten Sie weitere Informationen benötigen oder sollten besondere Probleme auftreten, die in diesen Betriebsanweisungen nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über Ihren Siemens Ansprechpartner erhalten. Kontaktinformationen über Ihren örtlichen Ansprechpartner finden Sie im Internet:

Ansprechpartner (http://www.automation.siemens.com/partner/)

Einleitung

1.5 Weitere Informationen

2.1 Allgemeine Sicherheitsanweisungen

VORSICHT

Der einwandfreie und zuverlässige Betrieb des Produkts setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Wartung voraus. Dieses Instrument sollte nur von qualifiziertem Personal installiert oder bedient werden.

Hinweis

Veränderungen am Produkt, darunter auch Öffnen und unsachgemäße Modifikationen des Produktes, sind nicht zulässig.

Bei Nichtbeachtung dieser Bestimmung erlischt die Gültigkeit der CE-Kennzeichnung und der Herstellergarantie.

2.2 Systemerweiterungen

Installieren Sie nur für dieses Gerät bestimmte Systemerweiterungsgeräte. Das Installieren anderer Erweiterungen kann das System beschädigen sowie Sicherheitsvorschriften und anderen Richtlinien zuwiderlaufen.

Wenden Sie sich an Ihr technisches Unterstützungsteam oder Ihre Verkaufsstelle, um zu erfahren, welche Systemerweiterungen sich zur Installation eignen.

ACHTUNG

Wenn Sie durch Installation oder Austauschen von Systemerweiterungsgeräten Systemdefekte verursachen, erlischt der Garantieanspruch.

2.3 Installation in explosionsgefährdeten Bereichen

2.3 Installation in explosionsgefährdeten Bereichen

In explosionsgefährdeten Bereichen eingesetzte Betriebsmittel müssen Ex-zugelassen und entsprechend gekennzeichnet sein. Es ist unbedingt erforderlich, dass die im Gerätehandbuch und Ex-Zertifikat beschriebenen besonderen Bedingungen für den sicheren Betrieb beachtet werden.

Zulassungen für Ex-Bereiche

Das Gerät ist für den Einsatz in explosionsgefährdeten Bereichen zugelassen und besitzt die folgenden Zulassungen:

- SIFLOW FC070 Ex CT
 - ATEX IECEx
 - II 3G Ex nA IIC T4 Gc
 - II (1)G [Ex ia] IIC Ga
- SIFLOW FC070:
 - II 3G Ex nA IIC T4 Gc

Stellen Sie sicher, dass die Zulassung für Ex-Bereiche sich für die Umgebnung eignet, in der das Gerät installiert werden soll.

Kenndaten zur Eigensicherheit

Maximalwerte für SIFLOW FC070 Ex CT.

Tabelle 2-1 Ausgang für Messaufnehmer-Erreger

Anschlüsse X1 (Klemmen 3 und 4)		
Uo	16 V	
lo	66 mA	
Po	0,5 W	
Co	200 nF	
Lo	5 mH	

2.3 Installation in explosionsgefährdeten Bereichen

Anschlüsse X1 (Klemmen 12, 13, 15 und 16)	
Uo	15 V
lo	7,5 mA
Po	0,028 W
Co	200 nF
Lo	20 mH

Tabelle 2-2 Eingang/Ausgang Messaufnehmer-Sensor

Tabelle 2-3 Ausgang Messaufnehmer-Temperatur

Anschlüsse X1 (Klemmen 5, 6, 18 und 19)		
Uo	15 V	
lo	5,8 mA	
Po	0,022 W	
Co	200 nF	
Lo	10 mH	

Umgebungstemperatur

 T_a : -40 °C bis 60 °C bei horizontaler Montage der Profilschiene, T_a : -40 °C bis 50 °C bei vertikaler Montage der Profilschiene

Bei eigensicheren Stromkreisen dürfen ausschließlich zertifizierte Messgeräte, die für den Messumformer geeignet sind, eingesetzt werden.

Wird ein nicht konformes Speisegerät verwendet, so geht die "Eigensicherheit" verloren und die Zulassung wird ungültig.

2.4 Informationen zum Explosionsschutz

Besondere Bedingungen für die sichere Anwendung

Es gelten folgende Anforderungen:

- Beim Einbau des Betriebsmittels sind die nationalen Bestimmungen zu beachten, z. B. innerhalb der Europäischen Gemeinschaft die Norm EN 60079-14.
- IEC/EN 61241-14 ist beim Einbau in Umgebungen mit brennbarem Staub zu beachten.
- Bei Anschluss der Schutzerdung (PE) darf auch im Fehlerfall keine Potenzialdifferenz zwischen Schutzerdung (PE) und Potenzialausgleich (PA) auftreten.

Kabelverlegung

Kabel für den Einsatz in Zone 1 und 2 oder 21 und 22 müssen die Anforderungen erfüllen, wenn eine Prüfspannung > AC 500 V zwischen Leiter/Erde, Leiter/Schirmung und Schirmung/Erde angelegt wird.

Beim Anschluss der Geräte, die in explosionsgefährdeten Bereichen betrieben werden, sind die im jeweiligen Land geltenden Vorschriften zu beachten; beispielsweise müssen für Ex "d" und "nA" Kabel dauerhaft verlegt werden.

Referenzhandbuch

Weitere Informationen zur Trennung von eigensicheren und nicht-eigensicheren Kabeln und zum Einsatz der Platzhalterbaugruppe DM 370 finden Sie im Referenzhandbuch "Automatisierungssysteme S7-300, M7-300, ET 200 M Ex-Peripheriebaugruppen (<u>http://support.automation.siemens.com/WW/view/de/4068901</u>)" (Bestandteil des Dokumentationspakets 6ES7 398-8RA00-8AA0).

2.4 Informationen zum Explosionsschutz

SIFLOW FC070 entspricht den einschlägigen Sicherheitsbestimmungen nach IEC, EN, UL und CSA. Falls Sie über die Zulässigkeit der Aufstellung in der vorgesehenen Umgebung Zweifel haben, wenden Sie sich bitte an unsere Service-Ansprechpartner.

∕!∖warnung

Das Gerät ist für den Betrieb mit Sicherheits-Kleinspannung (Safety Extra-Low Voltage, SELV) aus einer Stromquelle begrenzter Leistung (Limited Power Source, LPS) ausgelegt.

Deshalb dürfen nur Sicherheits-Kleinspannungen und Stromquellen begrenzter Leistung gemäß IEC60950-1 an die Stromversorgungsklemmen angeschlossen werden.

Es sind Vorkehrungen zu treffen, die verhindern, dass die Nennspannung durch kurzzeitige Netzstörungen um mehr als 40 % überschritten wird.

Dieses Kriterium ist nur erfüllt, wenn die Versorgungsspannungen von einer Sicherheits-Kleinspannung abgeleitet werden.

2.5 Zertifikate

EXPLOSIONSGEFAHR: GERÄT NICHT TRENNEN, WENN EINE BRENNBARE ODER EXPLOSIVE ATMOSPHÄRE VORHANDEN IST.

Zertifizierungen und Zulassungen

SIFLOW FC070	SIFLOW FC070 Ex CT
II 3G Ex nA IIC T4 Gc	II (1)G [Ex ia] IIC Ga
	II 3G Ex nA IIC T4 Gc

Die Prüfstation und Prüfnummer finden Sie auf dem Typenschild der Funktionsbaugruppe.

- Funktionsbaugruppen mit der Zulassung Ex II 3G Ex nA IIC T4 Gc (SIFLOW FC070) dürfen in Zone 2 (ATEX-Kategorie 3G, IECEx EPL Gc) eingesetzt werden.
- Funktionsbaugruppen mit den Zulassungen Ex II 3G Ex nA IIC T4 Gc und Ex II (1)G [Ex ia] IIC Ga (SIFLOW FC070 Ex CT) dürfen in Zone 2 (ATEX-Kategorie 3G, IECEx EPL Gc) eingesetzt werden. Eigensichere Messaufnehmer für Zone 0, 1 und 2 dürfen in explosionsgefährdeten Bereichen der Zone 0, 1 oder 2 angeschlossen und eingesetzt werden.

Spezifische Ex-Anforderungen

- Beim Betrieb *innerhalb* des explosionsgefährdeten Bereichs (Zone 2) muss die Funktionsbaugruppe in einem geeigneten Gehäuse installiert werden, das mindestens die Schutzart IP 54 nach IEC/EN 60529 gewährleistet. Für das Gehäuse muss eine Herstellererklärung für Zone 2 (nach IEC/EN 60079-15) vorliegen.
- Wenn die Temperatur am Kabel oder in der Kabeleinführung dieses Gehäuses unter bestimmten Betriebsbedingungen 70 °C überschreitet oder am Leiterabzweig 80 °C überschreitet, dürfen nur Kabel verwendet werden, die für die tatsächlich gemessenen Temperaturen spezifiziert sind.
- Für SIFLOW FC070 Ex CT müssen besondere Bedingungen ("X-Bedingungen") erfüllt sein. Angaben zu den zulässigen Umgebungstemperaturen und Einbaulagen finden Sie in der Tabelle "Sicherheitstechnische Daten (Maximalwerte)".
- Beachten Sie außerdem die Normen EN 60079-0, EN 60079-14 und IEC/EN 60079-11 (außerhalb der EU: IEC 60079-0, IEC 60079-11 und IEC 60079-14).

2.5 Zertifikate

Zertifikate werden ins Internet gestellt und befinden sich auf der mit dem Gerät ausgelieferten CD-ROM.

Siehe auch

Zertifikate (http://www.siemens.de/prozessinstrumentierung/zertifikate)

Messung von Flüssigkeiten und Gasen

Die Coriolis-Massedurchflussmessgeräte SITRANS F C sind für die Messung einer Vielzahl von Flüssigkeiten und Gasen ausgelegt. Die Multiparameter-Geräte ermöglichen die genaue Messung von Massedurchfluss, Volumendurchfluss, Dichte, Fraktionsdurchfluss, Brix/Plato und Temperatur.

Hauptanwendungsbereiche

Die Hauptanwendungsbereiche des Durchflussmessgeräts nach dem Coriolis-Messprinzip finden sich in allen Industriezweigen, zum Beispiel

- Chemische und pharmazeutische Industrie: Waschmittel, Grundstoffe, pharmazeutische Produkte, Säuren, Laugen
- Lebensmittel und Getränke: Milchprodukte, Bier, Wein, alkoholfreie Getränke, Brix/Plato, Fruchtsäfte und Fruchtfleisch, Flaschenabfüllung, CO₂-Dosierung, CIP/SIP-Flüssigkeiten
- Automobilindustrie: Prüfen von Kraftstoffeinspritzdüsen und -pumpen, Befüllen von Klimaanlagen, Motorverbrauch, Lackierroboter
- Öl und Gas: Befüllen von Gasflaschen, Brennersteuerung, Druck-Erdgas-Spender, Prüfabscheider
- Wasser und Abwasser: Dosierung von Chemikalien zur Wasseraufbereitung

3.1 Benutzung in Automationsumgebung

Mögliche Anwendungen

Die Funktionsbaugruppe SIFLOW FC070 dient dazu, Messaufnehmer zwecks Durchflussmessung mit einem Automatisierungssystem zu verbinden.

3.1 Benutzung in Automationsumgebung

SIFLOW FC070 kann in folgenden Automatisierungsumgebungen verwendet werden:

- Zentral in S7-300
- Dezentral in ET 200M
 - In S7-300
 - In S7-400
 - Auf standardisierten PROFIBUS DP/PROFINET-Master-Systemen
- Als MODBUS Slave in Standalone- oder Parallelbetrieb mit MODBUS und SIMATIC oder auch Betrieb in Automatisierungssystemen anderer Anbieter (über RS232 oder RS485 Kommunikationsschnittstellen).
 ein möglicher MODBUS Master ist SIMATIC PDM (MODBUS RTU).

SIFLOW FC070 kann auch als Standalone-Gerät eingesetzt werden, wobei die Frequenzund Impulsausgänge verwendet werden.

Konfiguration	CPU	IM 153	Bedienoberfläc he	FB/DB	Anforderun gen	Anbindung
Zentral S7-300, C7	Alles verfügbar	-	FB/DB in S7	FB SIFL_FC (FB95), DB_FLOW_PARA, DB_FLOW_VEC	HSP- Installation (OM)	Rückwandbus
Dezentrale S7- 300, dezentrale S7- 400 (ET 200M)	Alles verfügbar	-1AA03 (ES 9 und höher) -2BA00 (Rel. 3.0.1 und höher) -2BB00 (Rel. 3.0.1 und höher)	FB/DB in S7	FB SIFL_FC (FB95), DB_FLOW_PARA, DB_FLOW_VEC	HSP- Installation (OM)	PROFIBUS DP
PCS 7 (ET 200M)	Alles verfügbar für PCS 7	-2BA00 (Rel. 3.0.1 und höher) -2BB00 (Rel. 3.0.1 und höher)	FB in S7, PCS 7-Bildbaustein in WinCC	FB SFL_FC (FB695)	HSP- Installation (OM)	PROFIBUS DP
Dezentrale Systeme anderer Anbieter (ET 200M)	DP-V1	-2BA00 (Rel. 3.0.1 und höher) -2BB00 (Rel. 3.0.1 und höher)	16-Byte-E/A, Datensätze	-	GSD- Installation	PROFIBUS DP
Dezentrale Systeme anderer Anbieter (ET 200M)	DP-V0	-2BA00 (Rel. 3.0.1 und höher) -2BB00 (Rel. 3.0.1 und höher)	16-Byte E/A	-	GSD- Installation	PROFIBUS DP
Dezentrale S7- 300, dezentrale S7- 400 (ET 200M)	Alles verfügbar	- 4AA01 (Firmware 2.0.1 und höher)	FB/DB in S7	FB SIFL_FC (FB95), DB_FLOW_PARA, DB_FLOW_VEC	HSP- Installation (OM)	PROFINET

Tabelle 3-1 Mögliche Konfigurationen der Funktionsbaugruppe SIFLOW FC070 (Ex)

3.1 Benutzung in Automationsumgebung

Konfiguration	CPU	IM 153	Bedienoberfläc he	FB/DB	Anforderun gen	Anbindung
PCS 7 (ET 200M)	Alles für PCS 7 verfügbar	- 4AA01 (Firmware 2.0.1 und höher)	FB in S7, PCS 7- Bildbaustein in WinCC	FB SIFL_FC (FB95), DB_FLOW_PARA, DB_FLOW_VEC	HSP- Installation (OM)	PROFINET
Dezentrale Systeme anderer Anbieter (ET 200M)	DP-V1	- 4AA01 (Firmware 2.0.1 und höher)	16-Byte-E/A, Datensätze	-	GSD- Installation	PROFINET
Dezentrale Systeme anderer Anbieter (ET 200M)	DP-V0	- 4AA01 (Firmware 2.0.1 und höher)	16-Byte-E/A, Datensätze	-	GSD- Installation	PROFINET
MODBUS	PG/PC	-	MODBUS Master (SIMATIC PDM)	-	EDD Installation	RS232/485 MODBUS RTU
MODBUS	Drittanbieter -CPU	-	MODBUS Master (z. B. Allen Bradley)	-		RS232/485 MODBUS RTU

3.1 Benutzung in Automationsumgebung

Bild 3-1 Systemüberblick über SIFLOW FC070 in Automatisierungsumgebung

3.1 Benutzung in Automationsumgebung

Bild 3-2 SIFLOW FC070 in Automatisierungsumgebung

Kostenloses Herunterladen

Hardware Support Package (HSP Datei "s7h2008x.hsp"), Funktionsbausteine und Datenbausteine, GSD und EDD-Dateien, Online-Hilfe und Benutzerunterlagen können unter folgender Adresse kostenlos aus dem Intranet/Internet heruntergeladen werden:

Hardware Support Package (http://support.automation.siemens.com/WW/view/de/24479364)

Adressenbereich

Der Adressbereich der Funktionsbaugruppe SIFLOW FC070 ist 16 Byte E/A.

3.2 Konzept

Konfiguration

Die Funktionsbaugruppe SIFLOW FC070 kann auf verschiedene Arten grundlegend konfiguriert werden.

- In einem SIMATIC S7-300 / S7-400 Automatisierungssystem mit
 - S7 V5.3 oder höher oder
 - PCS 7 Engineering V6.0 oder höher.

Dies erfolgt durch Integration der Funktionsbaugruppe SIFLOW FC070 in den SIMATIC Manager mit einer Hardwareaktualisierung (HSP, Hardware Support Package).

- In Verbindung mit einem dezentralen E/A System ET 200M in einem standardisierten PROFIBUS DP Mastersystem (Drittanbieter-System).
- In Verbindung mit einem dezentralen E/A System ET 200M in einem standardisierten PROFINET-Mastersystem (Drittanbieter-System).
 In diesem Fall werden die entsprechenden GSD-Dateien für die jeweilige IM 153-x benötigt.
- Über die MODBUS RTU <Schnittstelle:
 - Mit SIMATIC PDM, V5.2 und höher.
 In diesem Fall erfolgt die Integration der Funktionsbaugruppe SIFLOW FC070 durch den Import ihrer EDD-Datei in SIMATIC PDM.
 - Über das allgemeine MODBUS-Protokoll.

Hinweis

Diese Betriebsanleitung behandelt nur die Konfiguration in SIMATIC S7. Informationen zum Einsatz mit PCS7, MODBUS oder PROFIBUS finden Sie im Systemhandbuch zur FC070-Baugruppe (Bestell-Nr. A5E00924779 (http://support.automation.siemens.com/WW/view/en/24478991)).

3.2 Konzept

SIFLOW FC070 (FC = Flowmeter Coriolis (Coriolis-Durchflussmessgerät)) ist eine Messumformer-Funktionsbaugruppe, mit der industrielle Durchflussmessungen und Batching-Vorgänge nach dem Coriolis-Prinzip durchgeführt werden können.

SIFLOW FC070 wurde für das Automatisierungssystem SIMATIC S7-300 konzipiert und verwendet integrierte Kommunikations-, Diagnosesystem- und Konfigurationstools dieses Systems.

SIFLOW FC070 kann auch zum Betrieb mit MODBUS-Kommunikation benutzt werden. Es sind Standalone- oder Parallelbetrieb mit MODBUS und SIMATIC möglich oder auch der Betrieb in Automatisierungssystemen anderer Anbieter.. Bedienung (Parametrierung und Steuerung) und Überwachung (HMI) können mit SIMATIC PDM, einem MODBUS-Tool oder Automatisierungssystemen anderer Anbieter erfolgen.

Varianten

Die Funktionsbaugruppe ist in zwei Modellen erhältlich:

- SIFLOW FC070
- SIFLOW FC070 Ex CT f
 ür den Betrieb von Messaufnehmern in explosionsgef
 ährdeten Bereichen und im eichpflichtigen Verkehr

Systemkomponenten

Ein SIFLOW-System für industrielle Durchflussmessungen besteht aus folgenden Komponenten:

- Messumformer f
 ür SIFLOW FC070 / SIFLOW FC070 Ex CT
- Messaufnehmer
- SENSORPROM
- Hardware Support Package (HSP), Funktionsbausteine und Datenbausteine, GSD und EDD-Dateien, Online-Hilfe und Benutzerunterlagen

3.3 Leistungsmerkmale

- Einheitliches Design des Systems SIMATIC S7-300
- Konfiguration mit S7, PCS 7 Engineering oder SIMATIC PDM
- Zentralisierte Verwendung im Automatisierungssystem SIMATIC S7-300
- Dezentrale Verwendung in ET 200M über PROFIBUS DP oder PROFINET
- Verwendung als MODBUS Slave im Standalone- oder Parallelbetrieb mit MODBUS und SIMATIC möglich oder auch der Betrieb in Automatisierungssystemen anderer Anbieter
- Hohe Störfestigkeit
- Rasche Flussreaktion und Batching
- Schnelle schrittweise erzwungene Reaktion und hohe Aktualisierungrate

3.3 Leistungsmerkmale

- Messung von:
 - Massedurchfluss
 - Volumendurchfluss
 - Fraktionsdurchfluss
 - % Fraktion (z. B. °Brix)
 - Dichte
 - Messaufnehmertemperatur
- Zwei Summenzähler zur Summierung von Masse und Volumen, je nach Einstellung von:
 - Massedurchflussmessung
 - Messungen des Fraktionsdurchflusses (A und B)
 - Volumendurchflussmessung
- Schleichmengenunterdrückung
- Leerrohrerkennung
- Grenzwertüberwachung
- Skalierung und Einheiten-Konvertierung
- Digitalausgang 1 kann parametriert werden für:
 - Impulsausgang
 - Frequenzausgang
 - Batching (Dosieren)
- Digitalausgang 2 gemeinsam mit Digitalausgang 1 für:
 - Zweistufiger Batch oder
 - Phasenverschiebung 90° oder
 - Phasenverschiebung 180°
- Digitaleingang, kann parametriert werden für:
 - Batch- (Dosier-) Steuerung
 - Summenzählersteuerung (Rücksetzen der Summenzähler)
 - Nullpunkteinstellung
 - Eine Frequenz an den Digitalausgängen einstellen oder einfrieren, wenn diese auf "Frequenz" eingestellt sind
- Simulation von:
 - Prozesswerte
 - Digitalausgänge
 - Digitaleingang
 - Fehler
- Automatische Konfiguration der Funktionsbaugruppe mit Daten aus der SENSORPROM® Speichereinheit während des Startvorgangs

- Umfassende Diagnosefunktionen zur Fehlerbehebung und Messaufnehmerüberprüfung
- Verwendung in Gefahrenbereichen Zone 2 (SIFLOW FC070 mit Gehäuse)
- Verwendung von Messaufnehmern in explosionsgefährdeten Bereichen Zone 0, 1 und 2 (SIFLOW FC070 Ex CT)
- Unabhängige Kalibrierung von SIFLOW FC070 und dem Messaufnehmer garantiert unveränderte Messgenauigkeit z. B. nach Austausch der Funktionsbaugruppe. Die Kalibrierungsdaten des Messaufnehmers sowie die Benutzereinstellungen werden in einem SENSORPROM gespeichert, der nach einem Austausch der Baugruppe weiter verwendet werden kann. Die Daten werden folglich beibehalten. Die Kalibrierungsdaten der Funktionsbaugruppe werden direkt im FLASH der SIFLOW FC070 gespeichert.
- Verschlüsselte Kommunikation über Rückwandbus zwischen SIFLOW FC070 und Siemens-Bedienfeld über ActiveX-Komponente OCX

3.4 Funktionsweise

Das Prinzip der Durchflussmessung beruht auf dem Coriolis-Gesetz der Bewegung.

Partikel, die sich in einem rotierenden/schwingenden System bewegen, widersetzen sich den auferlegten Schwingungen in einer Weise, die mit der Masse und der Geschwindigkeit (Momentum) konsistent ist. Werden von einem Coriolis-Durchflussmesser Schwingungen erzeugt, während die Prozessmedien in den Krümmungen beschleunigt werden, führt dies zu Phasenverzerrungen der Messrohre.

Die Messaufnehmer SITRANS F C werden durch einen elektromechanischen Erregerkreis angesteuert, der die Rohrleitung in ihrer Eigenfrequenz zu Schwingungen anregt. Zwei Sensoren, S1 und S2, sind symmetrisch auf den beiden Seiten des Erregers angeordnet.

Wenn der Messstoff durch den Messaufnehmer strömt, wirkt die Coriolis-Kraft auf das Messrohr und verursacht eine Auslenkung des Rohres, die als Phasenverschiebung zwischen Sensor S1 und S2 gemessen werden kann.

Die Phasenverschiebung verhält sich proportional zur Massendurchflussrate. Die Frequenz und Amplitude des Erregers werden automatisch geregelt, um ein stabiles Ausgangssignal der beiden Sensoren im Bereich von 80 bis 120 mV zu gewährleisten. Die Temperatur der Messaufnehmerrohre wird über einen PT1000 gemessen, um eine genaue Kompensation für Veränderungen der Materialsteifigkeit berechnen zu können. Resultierend daraus wird ebenfalls die Medientemperatur im Prozess genau gemessen.

Das zum Durchfluss proportionale Phasensignal der Sensoren, der Temperaturmesswert und die Erregerfrequenz ermöglichen die Berechnung und Meldung von Masse, Dichte, Volumen und Temperatur.

```
Beschreibung
```

3.4 Funktionsweise

SENSORPROM

Alle SITRANS F C Coriolis-Durchflussmessgeräte verfügen über einen SENSORPROM-Speicherbaustein, in dem während der Lebensdauer des Produkts die spezifischen Kalibrierdaten des Messaufnehmers und Einstellungen des Messumformers abgelegt sind. Die dem jeweiligen Messaufnehmer entsprechenden Werkseinstellungen sind im SENSORPROM-Baustein gespeichert. Bei der Inbetriebnahme beginnt das Durchflussmessgerät ohne vorherige Programmierung sofort mit einer typischen Messung. Auch kundenspezifische Einstellungen können in den SENSORPROM-Baustein geladen werden.

Hardware einbauen und ausbauen

Wissenswertes vor dem Einbau

Die SIFLOW FC070 kann eingesetzt werden:

- Im Automatisierungssystem
- Im Stand-alone-Modus

Bei beiden Einsatzarten erfolgt der Einbau in drei Schritten:

- 1. Einbau des SENSORPROM
- 2. Einstellung der DIP Schalter
- 3. Aufbau

Beim Einsatz unter Bedingungen mit Explosionsgefahr (Zone 2) muss das Gerät in einem Gehäuse installiert sein, das mindestens die Schutzart IP54 nach IEC/EN 60529 aufweist.

Das Gehäuse muss die Anforderungen von IEC/EN 60079-15 erfüllen.

Austauschen der Baugruppe

Ein Ziehen/Stecken von SIFLOW FC070 unter Spannung ist nicht zulässig. Schalten Sie die 24 V DC-Versorgungsspannung der Funktionsbaugruppe vor dem Austausch einer SIFLOW FC070 aus.

Hinweis

Nach einer Parameteränderung müssen Sie mindestens 3 Sekunden warten, bevor Sie die Funktionsbaugruppe ausschalten. Andernfalls können Daten im SENSORPROM verloren gehen.

Bei unsachgemäßem Umgang mit den Frontsteckern kann es zu Verletzungen oder Sachschäden kommen.

Das SENSORPROM muss von der alten auf die neue Funktionsbaugruppe umgesteckt werden. Die zuletzt verwendeten Parameter sind im SENSORPROM gespeichert und werden beim Anlauf automatisch geladen.

4.1 Einbau und Ausbau des SENSORPROM

4.1 Einbau und Ausbau des SENSORPROM

SENSORPROM für Daten und Einstellungen

Der Messaufnehmer wird mit einem zugehörigen SENSORPROM geliefert, der für den verwendeten Messaufnehmer vorkonfiguriert ist (mit Kalibrierdaten u.a.). Dieser SENSORPROM enthält Messaufnehmerdaten und Messumformer-Einstellungen für die Funktionsbaugruppe SIFLOW FC070.

Installation

Das Gehäuse der SIFLOW FC070 / SIFLOW FC070 Ex CT hat an der Rückseite eine Aussparung für den Einbau des SENSORPROM.

ACHTUNG

Schalten Sie die DC 24 V-Versorgungsspannung der SIFLOW FC070 / FC070 Ex CT aus, bevor Sie den SENSORPROM ein- oder ausbauen.

4.1 Einbau und Ausbau des SENSORPROM

Montageschritte

Schritt	Tätigkeit	
1.	Stecken Sie den SENSORPROM in den SENSORPROM-Schacht auf der Baugruppenrückseite. Hinweis: Der SENSORPROM ist so ausgeführt, dass er nicht verdreht in den Schacht gesteckt werden kann.	
2.	Schieben Sie den SENSORPROM so weit in den Schacht, bis er bündig mit der Baugruppenrückseite abschließt. Durch die Montage der SIFLOW FC070 auf der Profilschiene ist der SENSORPROM gegen Lockerung gesichert.	

Tabelle 4-1 Arbeitsschritte zum Einbauen des SENSORPROM

Hardware einbauen und ausbauen

4.1 Einbau und Ausbau des SENSORPROM

Ausbauschritte

Schritt	Tätigkeit	
1.	Vorsichtig einen Standardschraubendreher an der oberen Aussparung einsetzen.	
2.	Den SENSORPROM ausreichend weit aus dem Schacht schieben, dass Sie ihn von hinten ergreifen können.	

Tabelle 4-2 Arbeitsschritte zum Ausbauen des SENSORPROM

Hinweis

Der Einbau/Ausbau des SENSORPROM bei der SIFLOW FC070 Ex CT im 80 mm breiten Gehäuse erfolgt auf die gleiche Weise wie in der Tabelle oben gezeigt, wobei der SENSORPROM in dieselbe Richtung ausgerichtet wird wie bei der SIFLOW FC070 im 40 mm breiten Gehäuse.

4.2 DIP-Schalter

4.2.1 MODBUS Adressschalter

Die Funktionsbaugruppe SIFLOW FC070 besitzt zwei DIP-Schalter, die sich seitlich am Gehäuse der SIFLOW Baugruppe befinden: den MODBUS Slave-Adressschalter und den Schreibschutzschalter.

Bild 4-1 Schreibschutzschalter (WP) und Modbus-Adressschalter

4.2.2 MODBUS Slave-Adresse

Für die Kommunikation über den MODBUS muss die zugehörige MODBUS Slave-Adresse eingestellt werden. Unter dieser Adresse kann die SIFLOW FC070-Funktionsbaugruppe vom MODBUS-Master individuell adressiert werden.

Für die Einstellung der MODBUS Slave-Adresse gibt es zwei Möglichkeiten:

 Am DIP-Schalter wird "0" eingestellt, wenn die MODBUS Slave-Adresse mit PDM oder SIMATIC eingestellt werden soll. Die Funktionsbaugruppe wird mit der Standard-Slave-Adresse = 1 gestartet. Zuerst muss die Punkt-zu-Punkt-Verbindung mit der Slave-Adresse "1" hergestellt werden. Anschließend kann die Slave-Adresse über SIMATIC oder über SIMATIC S7 in HW-Konfig (Grundparameter "Device Adresse") geändert werden.

Am DIP-Schalter wird "1...247" eingestellt, wenn eine feste (hardwaredefinierte) MODBUS Slave-Adresse eingestellt werden soll (Slave-Adresse von SIMATIC PDM oder SIMATIC S7 wird ignoriert).

Bild 4-2 Beispiel für MODBUS Slave-Adresse

4.3 Montage auf der Profilschiene

4.2.3 Schreibschutz

Neben dem MODBUS Slave-Adressschalter befindet sich in einer weiteren Aussparung der Schreibschutzschalter. Der Schreibschutzschalter ist der äußerste Schalter auf der linken Seite. Die anderen beiden Schalter werden nicht verwendet und sollten in "OFF"-Stellung gelassen werden.

Durch Aktivieren dieses Schreibschutzes können die Parameter nur vom Gerät gelesen werden. Mit diesem Schreibschutzschalter können Sie verhindern, dass unabsichtlich Firmware-Updates auf die Funktionsbaugruppe geladen werden.

Bei "ON" ist der Schreibschutz aktiv.

4.3 Montage auf der Profilschiene

SIFLOW FC070 ist eine Funktionsbaugruppe des Systems SIMATIC S7-300 und kann über den Rückwandbus direkt an das Automatisierungssystem angeschlossen werden. Der Montage-/Verkabelungsaufwand für die 40 mm oder 80 mm breite Funktionsbaugruppe wird durch die Montage auf der DIN-Profilschiene (Einrasttechnik) deutlich verringert.

Anforderungen

- Die Projektierung des Automatisierungssystems ist abgeschlossen.
- Die Profilschiene ist montiert.

Hinweis

Standard ist die horizontale Montage der Profilschiene. Bei vertikaler Montage der DIN-Profilschiene darf die SIFLOW FC070 nur bei niedrigeren Umgebungstemperaturen betrieben werden (siehe "Technische Daten" (Seite 191)).

Hinweis

Beim Zusammenbau der SIMATIC-Komponenten mit SIFLOW FC070 müssen die Aufbaurichtlinien von SIMATIC PCS 7 eingehalten werden. Ausführliche Beschreibungen finden Sie in den jeweiligen SIMATIC-Gerätehandbüchern zur Installation des Automatisierungssystems ET 200M.

Montageschritte

SIFLOW FC070 wird in folgenden Schritten montiert:

- 1. Überprüfen Sie, ob der Busverbinder in der Baugruppe links von SIFLOW FC070 gesteckt ist.
- 2. Stecken Sie den Busverbinder zur Folgebaugruppe rechts von SIFLOW FC070 (falls vorhanden) ein.
- 3. Hängen Sie SIFLOW FC070 auf der Profilschiene ein, schieben Sie die Funktionsbaugruppe bis an die linke Baugruppe heran und schwenken Sie die Funktionsbaugruppe nach unten.
- 4. Befestigen Sie die SIFLOW FC070 mit einer Schraube (bzw. die SIFLOW FC070 Ex CT mit zwei Schrauben) am unteren Teil der Profilschiene.
- 5. Kennzeichnen Sie SIFLOW FC070 entsprechend Ihrem Kennzeichnungssystem.
Anschließen

5.1 Allgemeine Anweisungen

Falls die Temperatur am Kabel oder in der Kabeleinführung 70 °C überschreitet oder am Leiterabzweig 80 °C überschreitet, müssen besondere Vorkehrungen getroffen werden.

Wenn das Gerät bei Umgebungstemperaturen (Luft) von 50 bis 60 °C betrieben wird, dürfen nur Kabel verwendet werden, die für eine maximale Betriebstemperatur von mindestens 85 °C zugelassen sind.

Siehe auch

Automatisierungssysteme S7-300, M7-300, ET 200M, Ex-Peripheriebaugruppen (http://support.automation.siemens.com/WW/view/de/4068901)

5.2 Allgemeine Sicherheitshinweise

∕!∖warnung

Es sind die geltenden Vorschriften für elektrische Anschlüsse zu beachten.

- Das Gerät niemals bei eingeschalteter Netzspannungsversorgung installieren!
- Stromschlaggefahr!

5.3 Montage der SIFLOW FC070 Ex CT

Voraussetzungen

Für die eigensichere Installation der FC070 Ex CT müssen alle verwendeten Trennwände, Verbindungskabel und Anschlüsse den Anforderungen der IEC/EN 60079-11 entsprechen.

5.3 Montage der SIFLOW FC070 Ex CT

Montage der Baugruppe

Einsatz der Trennwand

Im eingeschalteten Zustand ist die mitgelieferte Trennwand in der Funktionsbaugruppe stets zwischen den eigensicheren und den nicht-eigensicheren Stromkreisen einzusetzen.

 Stellen Sie sicher, dass die Trennwand wie in den Abbildungen unten gezeigt eingesetzt wird und dass ein Mindestabstand von 50 mm (minimale Gewindelänge) zwischen den nicht-eigensicheren Anschlüssen (X2, X3 und X4, links) und dem Messaufnehmer-Anschluss (X1, rechts) eingehalten wird.

Anschließen

5.3 Montage der SIFLOW FC070 Ex CT

- (1) Trennwand
- (2) Messaufnehmer-Stecker

SIFLOW FC070 Ex CT mit eingesetzter Trennwand

- (1) Trennwand
- (2) Messaufnehmer-Stecker

- Verwendung der Trennwand der SIFLOW FC070 Ex CT
- 1. Entfernen Sie die Trennwand, bevor die Kabel angeschlossen werden.

5.3 Montage der SIFLOW FC070 Ex CT

- 2. Verdrahten Sie den Messaufnehmer-Stecker X1 und stecken Sie ihn rechts von der Steckverbindung ein, siehe "Anschließen von Ex-Baugruppen"
- 3. Stecken Sie die Trennwand wie oben abgebildet ein.
- 4. Fügen Sie X2, X3 und X4 in die entsprechende Steckverbindung links ein.
- 5. Schließen Sie den Schirm an die Klemmen 1, 2, 14, 17 und 20 des dafür vorgesehenen 20-poligen Frontsteckers X1 an.

VORSICHT

Die Kabel der Steckverbindungen X2, X3 und X4 müssen aufwärts aus der Funktionsbaugruppe heraus verlegt und die Kabelabschirmungen bei Bedarf an geerdete Schirmklemmen angeschlossen werden.

∕!∖vorsicht

Vermeiden Sie eine direkte Verbindung der Messaufnehmer-Kabelabschirmung mit der Erde seitlich an der Funktionsbaugruppe SIFLOW FC070 Ex CT.

VORSICHT

Verlegen Sie eigensichere und nicht-eigensichere Leiter in getrennten Kabelkanälen, um eine strenge Trennung im Anschlusssystem sicher zu stellen.

Hinweis

Wenn die minimale Gewindelänge zwischen stromführenden Teilen der Ex-Baugruppen und Nicht-Ex-Baugruppen < 50 mm ist, kann die Gewindelänge zwischen den Baugruppen auf zwei Arten beibehalten werden:

- Fügen Sie das Platzhalter-Modul DM 370 (6ES7 370-0AA01-0AA0) zwischen den betroffenen Ex- und Nicht-Ex-Baugruppen ein
- Bei Einsatz der Busmodule auf dem aktiven Rückwandbus können Sie auch die Ex-Trennwand (6ES7 195-1KA00-0XA0) verwenden.

Siehe auch

Anschließen von Ex-Baugruppen (Seite 43)

Automatisierungssysteme S7-300, M7-300, ET 200M, Ex-Peripheriebaugruppen (http://support.automation.siemens.com/WW/view/de/4068901)

5.4 Anschließen von Nicht-Ex-Baugruppen

5.4 Anschließen von Nicht-Ex-Baugruppen

Lage der Anschlusselemente

Alle Signale für die Funktionsbaugruppe SIFLOW FC070 werden auf einen 40-poligen Frontstecker gelegt.

Bild 5-1 Frontstecker (Nicht-Ex-Version)

Anschließen des Frontsteckers

- Verdrahten Sie den Frontstecker wie beschrieben in der Betriebsanleitung SIMATIC S7-300, CPU 31xC und CPU 31x: *Installation*. Angaben zur Pinbelegung des Frontsteckers finden Sie untenstehend.
- Schließen Sie Leitungsschirme über ein Schirmanschlusselement an, wie beschrieben in der Betriebsanleitung SIMATIC S7-300, CPU 31xC und CPU 31x: *Einbau*. Eine Verbindung des Schirms nur mit dem Frontstecker ist nicht als EMV-gerechte Erdungsmaßnahme geeignet.
- Der Messaufnehmer wird mit einem 10-adrigen Kabel, das mit dem Messaufnehmer ausgeliefert wird, an den Frontstecker angeschlossen.
 Die Farbkodierung für die Signale des Messaufnehmers finden Sie in der Tabelle unten.

5.4 Anschließen von Nicht-Ex-Baugruppen

Pinbelegung für Frontstecker

Bild 5-2 Pinbelegung für Frontstecker SIFLOW FC070

Die 8 Pins **"SHIELD (earth)"** = "Schirm (Erde)" sind baugruppenintern mit der Profilschiene verbunden.

Farbkodierung des Messaufnehmerkabels

Pin	Signal	Farbe	Bedeutung	
23	DRV +	braun	Treiber (Erreger) +	
24	DRV -	rot Treiber (Erreger) -		
25	T In +	orange	Temperatureingang +	
26	T In -	gelb	Temperatureingang -	
32	PU 1+	grün	Messaufnehmer Aufnahme 1 +	
33	PU 1-	blau	Messaufnehmer Aufnahme 1 -	
35	PU 2+	violett	Messaufnehmer Aufnahme 2 +	
36	PU 2-	grau	Messaufnehmer Aufnahme 2 -	
38	T Out +	weiß	Temperaturausgang +	
39	T Out -	schwarz	Temperaturausgang -	
21, 22, 34, 37, 40	Schirm		Schirm (Erde)	

5.5 Anschließen von Ex-Baugruppen

Bild 5-3 Verdrahtung

5.5 Anschließen von Ex-Baugruppen

Lage der Anschlusselemente

Alle Signale für die Funktionsbaugruppe SIFLOW FC070 Ex CT werden auf einen 10/7/3poligen Frontstecker und einen 20-poligen Frontstecker gelegt.

- Sensor auf den 20-poligen Frontstecker (X1)
- Kommunikationsschnittstellen auf den 10-poligen Frontstecker (X2)
- Digitale Ein-/Ausgänge auf den 7-poligen Frontstecker (X3)
- Stromversorgung auf den 3-poligen Frontstecker (X4)

Bild 5-4

Frontstecker (Ex-Version)

5.5 Anschließen von Ex-Baugruppen

Anschließen des Frontsteckers

- Verdrahten Sie den 20-poligen Frontstecker (X1) wie beschrieben in der Betriebsanleitung SIMATIC S7-300, CPU 31xC und CPU 31x: *Installation*. Angaben zur Pinbelegung des Frontsteckers finden Sie untenstehend.
- 2. Verdrahten Sie die 10-, 7- und 3-poligen Frontstecker (X2; X3; X4). Angaben zur Pinbelegung des Frontsteckers finden Sie untenstehend.
- Der Messaufnehmer wird mit einem 10-adrigen Kabel, das mit dem Messaufnehmer ausgeliefert wird, an den Frontstecker angeschlossen.
 Die Farbkodierung für die Signale des Messaufnehmers finden Sie in der Tabelle unten.

Pinbelegung des SIFLOW FC070 Ex CT-Frontsteckers

Bild 5-5 Pinbelegung des SIFLOW FC070 Ex CT-Frontsteckers

- Die 3 Pins "SHIELD (earth)" = "Schirm (Erde)" sind baugruppenintern mit der Profilschiene verbunden.
- Die 5 Pins "SHIELD (Ex)" = "Schirm (Ex)" sind baugruppenintern verbunden, aber von "Schirm (Erde)" isoliert.

Farbkodierung des Messaufnehmerkabels

Pin	Signal	Farbe	Bedeutung
3	DRV +	braun	Erreger +
4	DRV -	rot	Erreger -
5	T In +	orange	Tempeingang +
6	T In -	gelb	Tempeingang -
12	PU 1+	grün	Messaufnehmer- Sensor 1 +
13	PU 1-	blau	Messaufnehmer- Sensor 1 -
15	PU 2+	violett	Messaufnehmer- Sensor 2 +
16	PU 2-	grau	Messaufnehmer- Sensor 2 -
18	T Out +	weiß	Tempausgang +
19	T Out -	schwarz	Tempausgang -
1, 2, 14, 17, 20	Schirm Ex		Schirm (Ex)

Bild 5-6 Verdrahtung

Die Messaufnehmer-Kabelabschirmung darf NICHT direkt mit der Erde seitlich an der Funktionsbaugruppe SIFLOW FC070 Ex CT verbunden werden. Schließen Sie den Schirm an die Klemmen 1, 2, 14, 17 und 20 des dafür vorgesehenen 20-poligen Frontsteckers X1 an.

5.6 Abschirmung des Messaufnehmerkabels

Die Anschlüsse X2, X3 und X4 (links) sind NICHT eigensicher und Kabel, die mit diesen Anschlüssen verbunden sind, dürfen NICHT in den explosiongefährdeten Bereich hinein verlegt werden.

5.6 Abschirmung des Messaufnehmerkabels

Achten Sie darauf, dass sich kein ungeschützter Teil der Messaufnehmer-Kabelabschirmung außerhalb des Messumformers befindet.

Bild 5-7 Richtige Montage der Messaufnehmer-Kabelabschirmung

5.7 Beispiele für Anschlüsse

5.7.1 Anschluss an einen MODBUS Master über RS485

Anweisungen

- Die Pins 2 und 3 der SIFLOW FC070 dürfen nicht verwendet werden.
- Pin 4 (Erdung) kann optional angeschlossen werden.
- Schließen Sie einen Jumper als Abschluss zwischen den Pins 7 und 9 an.
- Schließen Sie einen Jumper als Abschluss zwischen den Pins 8 und 10 an.
- Der Leitungsschirm muss auf das SIMATIC-Schirmauflageelement aufgelegt werden.

5.7 Beispiele für Anschlüsse

5.7.2 Anschluss an einen MODBUS Master über RS232

Hinweis

Die Pins 1-10 in der oben stehenden Abbildung gehören zum Frontstecker X1 an der SIFLOW FC070 und zum Frontstecker X2 (hinter der linken Tür) der SIFLOW FC070 Ex CT.

Anweisungen

- 1. Verbinden Sie die Empfangsleitung RxD des MODBUS-Masters mit der Sendeleitung TxD (Pin 2) der SIFLOW FC070.
- Verbinden Sie die Sendeleitung TxD des MODBUS-Masters mit der Empfangsleitung RxD (Pin 3) der SIFLOW FC070.
- 3. Der Leitungsschirm muss auf das SIMATIC-Schirmauflageelement aufgelegt werden.

ACHTUNG	
Die Pins 5 bis 10 der SIFLOW FC070 dürfen nicht verwendet werden.	

5.7.3 Anschließen von Digitaleingang, Digitalausgängen und Stromversorgung

Bild 5-8 Anschließen von Digitaleingang, Ausgängen und Stromversorgung

Hinweis

Bitte beachten Sie, dass obige Abbildungen die Pins von SIFLOW FC070 zeigen. Folgendes gilt für die SIFLOW FC070 Ex CT:

- Pins 11-17 am Frontstecker X1 entsprechen den Pins 1-7 am Frontstecker X3 von SIFLOW FC070 Ex CT.
- Pins 18-20 am Frontstecker X1 entsprechen den Pins 1-3 am Frontstecker X4 von SIFLOW FC070 Ex CT.

Siehe auch die Abbildung "Pinbelegung des SIFLOW FC070 Ex CT-Frontsteckers".

5.8 Teiltest der Funktionalität

Nachdem die Funktionsbaugruppe montiert und alle Anschlüsse vorgenommen wurden, sollte eine Teilprüfung der Funktionalität für die SIFLOW FC070 und die angeschlossenen Komponenten durchgeführt werden.

Im Folgenden finden Sie eine Schrittanleitung, mit deren Hilfe Sie eine Teilprüfung der Funktionalität durchführen können:

Schritt 1: Sichtprüfung

Prüfen Sie, ob alle Schritte bisher korrekt durchgeführt wurden, d. h.:

- Ist die Funktionsbaugruppe äußerlich beschädigt?
- Sind die Baugruppen in einer geeigneten Lage eingebaut?
- Sind alle Befestigungsschrauben ordnungsgemäß angezogen?
- Sind alle Anschlusskabel sachgemäß angeschlossen und gut befestigt?

5.8 Teiltest der Funktionalität

- Wurde der Frontanschluss richtig durchgeführt?
- Ist die Abschirmung sachgemäß am Abschirmleiter für alle entsprechenden Kabel befestigt?
- Ist die Profilschiene am Erdleiter angeschlossen?
- Wurden alle Werkzeuge, Materialien und Elemente, die nicht zu SIFLOW FC070 gehören, von der Profilschiene und der Funktionsbaugruppe entfernt?

Schritt 2: Anschließen

- Schließen Sie die 24 V Stromversorgung an die SIFLOW FC070 an.
- Schalten Sie die Hilfsenergie ein.

Hinweis

Die korrekte Initialisierung von SIFLOW FC070 in SIMATIC kann nur gewährleistet werden, wenn:

- die SIMATIC-CPU (mit dezentralem Anschluss an ET 200 M) und die SIFLOW FC070 gleichzeitig eingeschaltet sind oder
- die SIFLOW FC070 zuerst eingeschaltet wird

Schritt 3: LED-Prüfung

Nach Anschluss der 24 V Versorgungsspannung und einer kurzen Initialisierungsphase (die interne Prüfung wird durch ein LED Laufmuster angezeigt) geht die SIFLOW FC070 in den Betriebszustand über.

Die folgenden LEDs müssen den unten angegebenen Status aufweisen, wenn das Gerät korrekt funktioniert:

- LED (RUN) → Status ON
- LED (FLO) → Blinkt, wenn eine Durchflussmessung erfolgt andernfalls Status OFF.
- LED (SF) → Status OFF

Bei einem Fehler, siehe Kapitel "Fehlerbehebung/FAQs" (Seite 179).

Besteht der Fehler auch nach Prüfung der Installation und des Anschlusses noch fort, nehmen Sie die Inbetriebnahme vor und verwenden Sie entweder SIMATIC PDM oder SIMATIC PCS 7, um den Fehler zu identifizieren.

Software-Installation

Folgendes SW Installationspaket wird mit SIFLOW FC070 geliefert:

- SIFLOW S7 SW Bibliothek
- SIFLOW S7 HW Support Package
- SIFLOW PDM Gerätetreiber (EDDL Driver)
- SIFLOW CT OCX-Paket

Das SW-Installationspaket finden Sie auf der CD, die im Lieferumfang der Baugruppe enthalten ist, und die letzte Version steht zum Gratis-Download zur Verfügung:

http://support.automation.siemens.com (http://support.automation.siemens.com/WW/view/en/23781606/133100)

6.1 Installation der S7 Softwarebibliothek

Um SIFLOW FC070 in die Bausteinbibliothek des SIMATIC Managers aufzunehmen, muss das SETUP (start.exe) Programm (mit der CD geliefert) ausgeführt werden.

Zur Aktualisierung/Installation der S7 SW Bibliothek sind grundsätzlich folgende Schritte erforderlich:

- Laden Sie die Datei "Setup SiFlow FC Lib for S7 Vxx.zip" des Updates aus dem Internet herunter bzw. kopieren Sie die Datei von der mitgelieferten CD in den vorgesehenen Ordner und entpacken Sie sie.
- Öffnen Sie den Ordner "Setup" von Ihrer Festplatte, führen Sie "setup.exe" aus und folgen Sie den Schritten des Assistenten. Die Bibliotheksbausteine werden in die S7-Umgebung kopiert.
- Öffnen Sie den SIMATIC Manager und kopieren Sie die SIFLOW Bibliotheksbausteine (SIFL_FC, DB_FLOW_VEC, DB_FLOW_PARA und UDT_SIFL_FC) in das SIMATIC S7 Projekt.

Hinweis

Der Zugriff auf die SIFLOW Bibliothek (SIFL_FC) ist vom SIMATIC Manager aus möglich: -> Datei -> Öffnen -> Bibliotheken.

6.2 Installation des S7 Hardware Support Package

Die Funktionsbaugruppe SIFLOW FC070 befindet sich nicht im STEP 7-Baugruppenkatalog, sondern wird mit einem HW-Update nachinstalliert (Hardware Support Package "s7h2008x.hsp"). Dieses HW-Update enthält die Benutzeroberfläche für HW-Konfig und eine Online-Hilfe.

6.2 Installation des S7 Hardware Support Package

Schrittanleitung zur Installation

Die Vorgehensweise zur Installation des HW Support Package besteht aus folgenden Schritten:

- 1. Laden Sie die Datei "hsp2008.zip" des Updates aus dem Internet herunter bzw. kopieren Sie die Datei von der mitgelieferten CD in den vorgesehenen Ordner und entpacken Sie sie.
- 2. Öffnen Sie das Projekt im SIMATIC Manager und starten Sie die HW-Konfiguration.
- 3. Wählen Sie in HW-Konfig den Menübefehl Extras > HW-Updates installieren.
- 4. Im nächsten Dialog bestimmen Sie, ob Sie ein HW-Update aus dem Internet herunterladen oder es von CD kopieren wollen bzw. ob Sie bereits heruntergeladene Updates installieren wollen (Auswahl möglich).
- Markieren Sie die Komponenten, die installiert werden sollen (z. B. "Kopieren von CD" -> ausführen und zu den kopierten Dateien auf der Festplatte navigieren), und klicken Sie auf die Schaltfläche "Installieren".

HW Konfiguration in ET200M (Beispiel für PROFIBUS DP)

10	≩ ≌~ © © ©: jua	s® én én (b ⊂ 	1월 147			-		-
2	PS 307 2A	*	PROFIBUS(1): D	P master system	n(1)	_	End	Standard
			[۲ ۲		ROFIBUS DP Actuators Additional Field Devices CRObject Configured Stations Converter DP V0 slaves DP V0 slaves DP/AS-i DP/AS-i Electical Distribution
	(1) IM 153-1							ENCODER ET 2008
er	Module	Order Number	Address	Q Address	Comment			ET 200C ET 200eco
,	M 153-1	6E57 153-14402-0180	2045*				80	ET 2005
	SIELOW EC170	7ME4.120/2014/20/0EA0	256 271	256 271				ET 200L
		101241202011200200	ere ert				8	- T 200M
							8	M 153-1
			_				8	M 153-1
							8	M 153-1, Release 1-5
0						_	9	M 153-1, Release 6
2							1 6	IM 153-1, Release 7
0								10 H M 300
)								B A/40-300
								B-CP-300 B-CP-300
								 A/A0-300 A0-300 CP-300 CP-300
0								A//A0-300 A//A0-300 A//A0-300 B- CP-300 B- D1-300 B- D1/D0-300 D1/D0-300
0								Al/A0-300 Al/A0-300 C7-300 D1/20-300 D1/20-300 D1/20-300 PH-300 PH

6.2 Installation des S7 Hardware Support Package

HW-Konfiguration in ET200M (Beispiel für PROFINET)

Bild 6-2 ET200M HW-Konfiguration (PROFINET)

Software-Installation

6.3 PDM Driver Installation

HW-Konfiguration in S7-300 (CPU315-2-DP)

🖳 HW	Config - [SIMATIC 300(1) (Configuration) SIFLOW SU	ITCA	SE]	
💵 Stati	on Edit Insert PLC View Options Window Help			
] 🗅 🖨	- }~ 8 \$ \$ \$ 1 6 1 1 1 1 1 1 1 1 1 1			
	R	^		
1	PS 307 2A	1 =	<u>F</u> ind:	Siflow
2	CPU 315-2 DP		Profile:	Standard
$\frac{\chi_2}{3}$			E ₩ F	, ROFIBUS DP
4	SIFLOW FC070		l ⊡ m H P	ROFIBUS-PA
<u>5</u> 6			IE-₩ S	ROFINET IO IMATIC 300
7				C7
8				CP-300
10				FM-300
11				Controller Modules
Ľ		1		SIFLOW FC070
				SIFLOW FC070 Ex

Bild 6-3 S7-300 HW-Konfiguration

Nach Installation des HW-Updates steht Ihnen die Benutzeroberfläche zur Verfügung, um die statischen Grundparameter der SIFLOW FC070 im Katalogprofil "Standard" einzustellen.

6.3 PDM Driver Installation

Hinweis

Angaben zur Installation von PDM finden Sie im PDM-Gerätehandbuch.

Die Vorgehensweise zur Installation des PDM Device Drivers besteht aus folgenden Schritten:

- Laden Sie das Update aus dem Internet herunter, bzw. kopieren Sie es von der mitgelieferten CD in den dafür vorgesehenen Ordner und entzippen Sie die Datei.
- Öffnen Sie "Manage Device Catalog" aus Start → SIMATIC → SIMATIC PDM.
- Navigieren Sie zum PDM Device Driver, wählen Sie "SIFLOW FC070" und klicken Sie "OK", um den Treiber auf dem PC zu instalieren.

6.3 PDM Driver Installation

Kommunikation über die serielle Schnittstelle

Für eine Kommunikation über die serielle Schnittstelle stellen Sie die Sende- und Empfangspuffer-Länge auf 1 Byte ("niedrig").

Um diese Einstellungen vorzunehmen, gehen Sie folgendermaßen vor:

- Rechtsklick auf "My Computer" und Auswahl von "Properties" (Eigenschaften). Wählen Sie daraufhin folgenden Pfad: Hardware → Device Manager → Ports → COM 1 ... 8.
- Doppelklick auf die entsprechende Schnittstelle. Wählen Sie anschließend den folgenden Pfad: Port Settings → Advanced
- Stellen Sie den Empfangspuffer und Sendepuffer auf 1 Byte ("niedrig").

Zur Annahme der Einstellungen ist ein Wiederanlauf des Computers notwendig.

6.3 PDM Driver Installation

Schrittanleitung zur Konfiguration des PDM im SIMATIC Manager

Folgende Konfiguration im SIMATIC Manager muss durchgeführt werden, bevor der Anschluss mit SIFLOW FC070 hergestellt ist.

- 1. Hinzufügen der Baugruppe ins SIMATIC Modbus-Netzwerk:
 - Auswahl "View" (Ansicht) → "Process Device Network view" (Prozessgerät Netzwerkansicht).
 - Rechtsklick auf "Net" (Netzwerk) und Auswahl von "Insert New Object" (Neues Objekt einfügen) → "Modbus Net" (Modbus-Netzwerk).
 - Rechtsklick auf "Modbus Net" (Modbus-Netzwerk) und Auswahl von "Insert New Object" (Neues Objekt einfügen) → "Modbus Device" (Modbus-Gerät).
 - Klicken Sie auf "Assign" (Zuweisen) und weisen Sie das Modbus-Gerät der SIFLOW FC070 zu (Sensor → Flow -→ Coriolis → SIEMENS → SIFLOW FC070- → "appropriate sensor type and size" (geeigneter Messaufnehmertyp und -größe)).
- 2. Einstellen der COM-Port-Adresse:
 - Wählen Sie folgenden Pfad: Net → "Name of PC" → "COM Interface" und Doppelklick auf "COM Interface".
 - Wählen Sie "Connection" (Anschluss) und wählen Sie die geeignete COM-Schnittstelle.

SIMATIC Manager - [SIFLOW_F	C070_Demo_¥2_2 (Pro:	zeßgeräte-Netzsicht) ·	- C:\Program Files\S	IEMENS\STEP7\	s7proj\SIFLO¥	Y_F]
Datei Bearbeiten Einfügen Zie	Isystem Ansicht Extras	Fenster Hilfe		1		
<u> D 😂 数 🛲 X 🖻 🖻 </u>		🔠 🛗 📔 Kein	Filter > 💌			<u></u> *?
□ 🖶 SIFLOW_FC070_Demo_V2_2	Objektname /	Adresse Beschreibung	g Nachricht	Text1	Text 2	Text 3
	 COM interface 	1				
MODBUS net	Eigenschaften von C	COM interface (COM-So	hnittstelle)			×
	Allgemein Netz	Änderungslog Import	/erbindungsdaten			
	COM-Port					

Bild 6-4 Einstellung PDM Kommunikationsschnittstelle

- 3. Stellen Sie die Kommunikationsparameter für das SIMATIC Modbus-Netzwerk ein.
 - Wählen Sie "Net" (Netzwerk) → "Modbus net" (Modbus-Netzwerk), Rechtsklick auf "Modbus net" (Modbus-Netzwerk) und Auswahl von "Object Properties" (Objekteigenschaften).
 - Wählen Sie "Connection" (Anschluss) und stellen Sie die entsprechenden Kommunikationsparameter ein (Werkseinstellungen sind unten aufgeführt).

Software-Installation

6.3 PDM Driver Installation

SIMATIC Manager - [SIFLOW_ Datei Bearbeiten Einfügen Z	_FC070_Demo_¥2_2 (Prozeßgeräte-Netzsicht) C:\Program Files\SIEMENS\STEP7\s7proj\SIFLOW_F] Zielsystem Ansicht Extras Fenster Hilfe	
D 🛩 🎛 🛲 X 🖻 🖻	🔺 😰 🖕 🖦 🔚 🏢 🖻 < Kein Filter > 💽 🏹 🔡 🕮 🖷 🗖 📢	
SIFLOW_FC070_Demo_V2_2	Objektname Adresse Beschreibung Nachricht Text 1 Text 2 Text 3	
⊡-∺- Net	ISIFLOW FC070 1	-
MODBUS net	Eigenschalten von MODBUS net (MODBUS-Netz)	×
	Allgemein Änderungslog Import Verbindungsdaten	
	IrDA nicht aktiviert	
	Hinweis Auf korrekten Schnittstellentyp und Datenübertragung achten!	
	Datenübertragungsrate 19200 Baud	
	Querparităt 0 - gerade	
	Übertragungsart RTU	
	Response Timeout 1000 ms	

Bild 6-5 PDM Kommunikationseinstellung

Werkseinstellungen für die Modbus-Kommunikation

Folgende Standardeinstellungen wurden werkseitig vorgenommen.

Parameter	Standardeinstellung
Slave device address	1
Data transmission rate	19 200
Vertical parity position	E-8-1 (0 - gerade)
Response timeout	10 000 ms
Response delay	1 ms
Interframe space	35

Die Einstellungen können über SIMATIC PDM oder über Modbus geändert werden.

Hinweis

Die voreingestellte Slave-Device-Adresse (= 1) kann nur dann über SIMATIC PCS 7 oder SIMATIC PDM geändert werden, wenn am DIP-Schalter der Funktionsbaugruppe die Slave-Device-Adresse 0 eingestellt ist. Ist eine Adresse zwischen 1 und 247 am DIP-Schalter eingestellt, gilt diese Adresse und sie kann nicht über SIMATIC S7 oder SIMATIC PDM geändert werden.

Siehe auch

DIP-Schalter (Seite 35)

Programmierung in SIMATIC S7

In diesem Kapitel wird beschrieben, wie die Kommunikation mit dem Funktionsmodul unter Verwendung der mit dem Modul gelieferten S7 Funktionsblocks und Datenblocks erfolgt.

7.1 SIFLOW FC070 im zyklischen S7 Programm

Der Datenaustausch innerhalb des S7-300/400 Automatisierungssystems erfolgt über den Funktionsbaustein FB95 SIFL_FC, der mit der Baugruppe ausgeliefert wird.

Der Funktionsbaustein SIFL_FC (FB95) befindet sich nicht in der S7-Bausteinbibliothek, sondern wird mit einem Setup-Verfahren nachinstalliert, das im Kapitel "Installation" (Seite 51) beschrieben wird. Außer dem Funktionsbaustein FB95 enthält das Setup:

- Online-Hilfe für den Funktionsbaustein
- Zwei zugehörige Datenbausteine DB_FLOW_PARA (DB17) und DB_FLOW_VEC (DB16)
- Den benutzerdefinierten Datentyp UDT_SIFL_FC (UDT18)
- Benutzerdokumentation

Funktionsbaustein und Datenbaustein

Der Funktionsbaustein und die beiden Datenbausteine in S7 bieten Ihnen eine Benutzerschnittstelle für die Messaufnehmer.

Fügen Sie den Funktionsbaustein SFL_FC in das Anwenderprogramm ein und schreiben Sie Daten an die Ein- und Ausgänge des Funktionsbausteins (Aufrufparameter). Beim Programmieren des Aufrufs wird für den Funktionsbaustein SIFL_FC ein Instanz-Datenbaustein erstellt. Neben dem Instanz-Datenbaustein ist ein DB (DB_FLOW_PARA) Parameter für jede SIFLOW FC070 erforderlich. Darin werden die Parameter gespeichert. Der damit verbundene UDT kann auch zur Bildung des DB Parameters verwendet werden.

Der Vektor-DB (DB_FLOW_VEC) muss zusätzlich in die SIMATIC CPU geladen werden. Ein DB Vektor kann von mehr als einer SIFLOW FC070 verwendet werden.

Lesen von Parametern

Vor der Parametrierung müssen alle Parameter von SIFLOW FC070 in den Datenbaustein B_FLOW_PARA eingelesen werden, da der Datenbaustein nur voreingestellte und keine messaufnehmerspezifischen Daten enthält. Messaufnehmerspezifische Daten sind in der SENSORPROM Einheit enthalten.

Programmierung in SIMATIC S7

7.2 Funktionen des Funktionsblocks S7 SIFL_FC (FB95)

SIFLOW FC070 in der HW Konfiguration

Bei der Projektplanung für die Hardwarekonfiguration im SIMATIC Manager werden die grundlegenden Eigenschaften der Baugruppe definiert:

- Die Peripherieadresse der Baugruppe
- Diagnosefehlermeldung aktivieren
- Prozessfehlermeldung aktivieren
- Verhalten für CPU-Stopp

Die grundlegenden Parameter werden bei jedem Neustart und jedem STOP/RUN-Übergang der CPU in die Funktionsbaugruppe übertragen. Änderungen an den Parametern am Programmiergerät müssen kompiliert und auf die CPU übertragen werden.

7.2 Funktionen des Funktionsblocks S7 SIFL_FC (FB95)

Der FB SIFL_FC unterstützt Sie während des Betriebs der Funktionsbaugruppe SIFLOW FC070, die industrielle Durchflussmessungen nach dem Coriolis-Prinzip durchführt. Folgende Funktionen stehen zur Verfügung:

- Lesen des Datensatzes
- Schreiben des Datensatzes einschließlich Handshake
- Auswählen zweier lesbarer Prozesswerte
- Fehlerwarteschlange mit Genehmigungsbearbeitung
- Synchronisierte Angabe von Daten- und Bedienfehlern (nach Senden des Befehls oder Datensatzes an die Funktionsbaugruppe)
- Schreiben von Parametern mithilfe des Bausteins
- Senden von Prozessbefehlen einschließlich Handshake
- Steuern beider Digitalausgänge
- Konsistentes Auslesen der beiden gewählten Prozesswerte und des Status der Funktionsbaugruppe
- Synchronisierung starten
- Lifebit-Überwachung und -Kontrolle
- Schutz gegen Änderungen (FB geschlossen)
- Multi-Instanz-Fähigkeit

Hinweis

Der FB wertet keine Diagnosemeldungen aus

Siehe auch

Fehlermeldungen der SIFLOW FC070 (Seite 157) Beispiele (Seite 71) Daten- und Betriebsfehler (Seite 162) Messaufnehmerfehler (SE) und Prozessfehler (PE) (Seite 158)

7.3 Der Datenblock DB_FLOW_PARA

Voraussetzung

Beim Programmieren des Aufrufs im Funktionsdatenbaustein SIFL_FC wird für SIFL_FC ein Instanz-Datenbaustein erstellt. Neben dem Instanz-Datenbaustein ist für jede SIFLOW FC070 ein Parameterdatenbaustein DB_FLOW_PARA (DB17) erforderlich, in dem die Parameter für die Durchflussmessung abgelegt werden. Der bereitgestellte UDT_SIFL_FC (UDT18) kann zur Erstellung des Parameter DB verwendet werden.

Außerdem muss der Vektordatenbaustein DB_FLOW_VEC (DB16), der die allgemeine Struktur von DB_FLOW_PARA enthält, in die S7 CPU geladen werden. Pro S7 CPU ist nur ein DB_FLOW_VEC erforderlich.

Grundlegende Funktionen des Datenbausteins DB_FLOW_PARA

Der Datenbaustein DB_FLOW_PARA enthält die Parameter und Daten, die für die Durchflussmessungen geliefert werden und in Datensätzen (DR) zusammengefasst sind.

Alle Datensätze im Funktionsbaustein SIFL_FC (FB95), die mithilfe der Befehlscodes **200...399** und **600...649** von der Funktionsbaugruppe gelesen werden, werden im Datenbaustein DB_FLOW_PARA abgelegt.

Alle Datensätze im Funktionsbaustein SIFL_FC (FB95), die mithilfe der Befehlscodes **400...599** und **650...699** in die Funktionsbaugruppe übertragen werden, werden aus dem Datenbaustein DB_FLOW_PARA bezogen.

Die Datensätze 2 bis 12 und 39 (Parameter) können sowohl gelesen als auch geschrieben werden. Die Datensätze 30 bis 37 (Prozessdaten) können nur von der Funktionsbaugruppe gelesen werden.

Neben den Datensätzen enthält der Datenbaustein DB_FLOW_PARA auch die Aufrufparameter des Funktionsbausteins SIFL_FC (FB95). Durch das Verbinden der entsprechenden Ein- und Ausgänge von FB und DB ist es den Benutzern möglich, beim Aufrufen des FB die aktuellen Daten aus dem DB in die Eingänge des FB zu schreiben oder die Daten vom FB in den DB zu übertragen.

Hinweis

Sie können zwar die Inhalte (Parameterwerte) des Parameter-DB ändern, aber weder seine Länge noch seine Struktur.

7.3 Der Datenblock DB_FLOW_PARA

Aufrufparameter des Funktionsbausteins

Mit dem Aufrufparameter CMD_IN können Sie alle Befehle steuern, sowohl die zum Übertragen eines Datensatzes als auch die zum Ausführen eines Batch-Befehls. Durch Verwendung dieser Variablen stellen Sie den Befehlscode bereit und lösen den Befehl mithilfe der Variablen CMD_EN = 1 aus. Der FB SIFL_FC löscht nicht den Befehlscode, sondern setzt die Auslösevariable CMD_EN nach Ausführung des Befehls zurück.

Programmierung in SIMATIC S7

7.3 Der Datenblock DB_FLOW_PARA

Einrichten des Funktionsbausteins SIFL_FC (FB95)

SIFL_FC muss fur jede SIFLOW-Baugruppe in der Hardware-Konfiguration einmal aufgerufen werden.	"SIFL_ DATA(Insta nceDB)"
Der Datensatz ADDR ist für jede Baugruppe nur einmal vorhanden.	EN "SIFL_FC" ENO
 Für Jeden SIFL_FC muss auch ein DB_FLOW_PARA vorhanden sein DB_VECTOR existiert in jedem System nur einmal, unabhängig von der Anzahl der Baugruppen. Der angezeigte Aufruf ist eine typische Konfiguration von SIFL_FC für die meisten Anwendungen. Er umfasst: Lesen und Schreiben von Befehlen. Ändern von VAR1_VAL und VAR2_VAL Statusinformation SC_STATUS (Siehe auch Fehlermeldungen (Seite 157)) 	EN EN EN ENO 256 ADDR CHD_INPR -"CHD_IN 17 - DB_PARA CHD_FOK -"CHD_FO 16 - DB_VECTOR CHD_ERR -"CHD_EN "CHD_IN" - CHD_IN "CHD_ERR_C VAR_ADR L_VAR_ADR VAR_VAL L_VAR_VAL DIG_OUT L_DIG_OUT "VAR1_ADR VAR1_ADR L_VAR1 "VAR2_ADR" -VAR2_ADR ADR ADR ADR "CHD_EN" - CHD_EN L_VAR2 "ERR_MSC_ Q" - ERR_MSC_Q VAR1_VAL -"VAR1_VA VAR2_OK ERR_MSC - "ERR_MSC VAR1_OK ERR_MSC - "ERR_MSC TYPE - TYPE" "ERR_MSC
	FB_ERR FB_ERR_C START_UP - "START_

Hinweis

In der Online-Hilfe des Funktionsbausteins in STEP 7 finden Sie eine detaillierte Beschreibung der einzelnen Aufrufparameter des Funktionsbausteins und ein Beispiel für einen Bausteinaufruf. 7.3 Der Datenblock DB_FLOW_PARA

Aufrufparameter	Deklaration	Datentyp	Beschreibung		
ADDR	INPUT	GANZZAHL	Startadresse der Fu	unktionsbaugruppe SIFLOW FC070, z. B. 280	
DB_PARA	INPUT	GANZZAHL	Datenbaustein mit FB-Aufrufparametern bis zum DB-Offset 78, anschließend SIFLOW FC-Datensätze. Pro verwendeter SIFLOW FC070 ist ein DB_FLOW_PARA erforderlich. Sie können die DB- Nummer frei wählen.		
DB_VECTOR	INPUT	GANZZAHL	Datenbaustein mit Vektorinformationen zur Beschreibung der Struktur des DB_FLOW_PARA und Spezialbefehle (600-699), die nur vom FB ausgewertet werden können. Pro SIMATIC CPU ist nur ein DB_FLOW_VEC erforderlich. Sie können die DB-Nummer frei wählen.		
CMD_IN	INPUT	GANZZAHL	Auszuführender Befehlscode	Um zu verhindern, dass der Befehl mehrmals ausgelöst wird, sollte das Bit als Flanke erstellt werden	
			125	Die SIFLOW-Befehle werden unmittelbar an die Baugruppe übergeben. Siehe auch SIFLOW- Befehle (Seite 203)	
			200399	Einlesen eines der Datensätze 212, 3037, 39 von der Funktionsbaugruppe in den Parameterdatenbaustein DB_FLOW_PARA (CMD_IN = Datensatznummer + 200)	
			400599	Schreiben eines der Datensätze 212, 39 vom Parameterdatenbaustein DB_FLOW_PARA in die Funktionsbaugruppe (CMD_IN = Datensatznummer + 400)	
			600649	Einlesen einer Gruppe von Datensätzen von der Funktionsbaugruppe in den Parameterdatenbaustein DB_FLOW_PARA	
			600	Lesen von Messaufnehmereinstellungen DR 3, 11, 31	
			601	Lesen von Summenzählereinstellungen DR 4, 11	
			602	Lesen von Batch-Einstellungen DR 5, 11, 30, 31	
			603	Lesen von Parameter DR 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 30, 31, 32, 33, 34, 35, 36, 37, 39 und Senden des Befehls CMD_PARA_CHANGE_ACK	
			604	Lesen von Messaufnehmereinstellungen DR 2, 3	
			647	Lesen von Parameter DR 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39	
			648	Lesen von Prozessdaten DR 30, 31, 32, 33, 34, 35, 36, 37	
			649	Lesen aller Datensätze	
			650699	Einlesen einer Gruppe von Datensätzen vom Parameterdatenbaustein DB_FLOW_PARA in die Funktionsbaugruppe.	
			650	Schreiben von Messaufnehmereinstellungen DR	

Tabelle 7-1 Aufrufparameter des Funktionsbausteins SIFL_FC

7.3 Der Datenblock DB_FLOW_PARA

Aufrufparameter	Deklaration	Datentyp	Beschreibung		
			651	Schreiben von Summenzählereinstellungen DR 4, 11	
			652	Schreiben von Batch-Einstellungen DR 5, 11	
			653	Schreiben von Messaufnehmereinstellungen DR 2, 3	
			699	Schreiben aller Parameter DR (DR 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39) vom Parameterdatenbaustein DB_FLOW_PARA in die Funktionsbaugruppe.	
			700704	Importieren neuer Werte, die über die E/A- Schnittstelle gesendet wurden.	
			700	Importieren aller neuen Werte, die über die E/A- Schnittstelle gesendet wurden (VAR_ADR, VAR_VAL, DIG_OUT, VAR1_ADR, VAR2_ADR)	
			701	Importieren neuer Werte für Aufrufparameter VAR_ADR und VAR_VAL	
			702	Importieren eines neuen Werts für Aufrufparameter DIG_OUT	
			703	Importieren eines neuen Werts für Aufrufparameter VAR1_ADR	
			704	Importieren eines neuen Werts für Aufrufparameter VAR2_ADR	
VAR_ADR	INPUT	GANZZAHL	Adresse der Eingar	ngsvariablen*	
VAR_VAL	INPUT	DWORD	Adresse der Eingar	ngsvariablen	
DIG_OUT	INPUT	DWORD	Digitalausgangsste	uerung	
		Bit 0 / 1	ASIC-Steuerung zu	r Deaktivierung von Ausgang 1/2:	
			 0 = Ausgang wi LED folgen Imp 	rd vom Coriolis-ASIC gesteuert (Ausgang und DO1 uls, Frequenz oder Batch)	
			 1 = Ausgangsst (Steuerung ist a 	euerung durch Coriolis-ASIC ist deaktiviert auf Bit 2 und 3 geschaltet)	
		Bit 2 / 3	Status von Ausgan	g 1/2 mit ASIC-Steuerung deaktiviert:	
			• 0 = aus (Schalte	er offen, kein Strom, DO1 LED aus)	
			• 1 = ein (Schalte	r geschlossen, Strom, DO1 LED ein)	
VAR1 ADR	INPUT	GANZZAHL	Adresse der Ausga	nosvariablen 1 *	
VAR2_ADR	INPUT	GANZZAHL	Adresse der Ausga	ngsvariablen 2 *	
CMD_EN	IN/OUT	BOOL	Ausführung des Be	fehls (CMD_IN):	
			1: Starten der B Befehls automa	lefehlsausführung, FB wird nach Ausführung des tisch auf 0 zurückgesetzt	
			O: Vorgang abg	eschlossen	
ERR_MSG_Q	IN/OUT	BOOL	Benutzerbestätigur	ng von Fehlermeldung an ERR_MSG_C:	
			• 1: Bestätigung	von Fehlermeldung	
			0: keine Bestäti	gung von Fehlermeldung	
CMD_INPR	OUTPUT	BOOL	Befehl wird ausgefi	ührt:	
			• 1: Vorgang noc	h nicht abgeschlossen	
			• 0: Vorgang abg	eschlossen	

Programmierung in SIMATIC S7

7.3 Der Datenblock DB_FLOW_PARA

Aufrufparameter	Deklaration	Datentyp	Beschreibung
CMD_FOK	OUTPUT	BOOL	Befehl ordnungsgemäß ausgeführt (das Bit wird nur für einen Zyklus (Flanke) gesetzt):
			1: Befehl mit Fehler ausgeführt
			0: Befehl ohne Fehler ausgeführt
CMD_ERR	OUTPUT	BOOL	Fehler bei der Befehlsausführung, zeigt einen synchronen Fehler für genau einen Zyklus an:
			• 1: synchroner Fehler vorhanden
			0: kein synchroner Fehler
CMD_ERR_C	OUTPUT	BYTE	Statische Angabe des letzten Fehlercodes eines synchronen Fehlers (Fehler während Befehlsausführung). Siehe Tabelle "Fehlerinformation von Funktionsbaustein SIFL_FC (Seite 169)"
L_VAR_ADR	OUTPUT	GANZZAHL	Aktuelle Adresse der Eingangsvariablen
L_VAR_VAL	OUTPUT	DWORD	Aktueller Wert der Eingangsvariablen
L_DIG_OUT	OUTPUT	DWORD	Aktueller Digitalausgang
L_VAR1_ADR	OUTPUT	GANZZAHL	Aktuelle Adresse der Ausgangsvariablen 1 *
L_VAR2_ADR	OUTPUT	GANZZAHL	Aktuelle Adresse der Ausgangsvariablen 2 *
VAR1_VAL	OUTPUT	DWORD	Wert von Ausgangsvariable 1 (VAR1_ADR)
VAR2_VAL	OUTPUT	DWORD	Wert von Ausgangsvariable 2 (VAR2_ADR)
SC_STATUS	OUTPUT	DWORD	Status der Funktionsbaugruppe. Siehe Tabelle "Systemstatusinformation (Seite 170)"
VAR1_OK	OUTPUT	BOOL	VAR1_VAL ist der aktuelle Wert von VAR1_ADR:
			• 1: Wert von VAR1_VAL = VAR1_ADR
			O: Wert von VAR1_VAL ≠ VAR1_ADR
VAR2_OK	OUTPUT	BOOL	VAR2_VAL ist der aktuelle Wert von VAR2_ADR:
			• 1: Wert von VAR2_VAL = VAR2_ADR
			• 0: Wert von VAR2_VAL ≠ VAR2_ADR
ERR_MSG	OUTPUT	BOOL	Neue Fehlermeldung in der Fehlerwarteschlange:
			• 1: Fehlermeldung vorhanden
			0: keine Fehlermeldung
ERR_MSG_TYPE	OUTPUT	BYTE	Fehlermeldungstyp in ERR_MSG_C; Bit 0: Kein Fehler
			Bit 1: Messaufnehmerfehler
			Bit 2: Prozessfehler
			• Bit 4: Bedienfehler
ERR_MSG_C	OUTPUT	BYTE	Nummer der Fehlermeldung muss vom Benutzer an ERR_MSG_Q bestätigt werden. Nach der Bestätigung wird die Fehlermeldung aus der Fehlerwarteschlange gelöscht. Siehe Tabelle "Fehlerinformation von Funktionsbaustein SIFL_FC" (Seite 169), Tabelle "Daten- und Bedienfehler" (Seite 162) und Tabelle "Messaufnehmerfehler und Prozessfehler" (Seite 158).

7.4 Funktionen des Datenblocks DB_FLOW_VEC

Aufrufparameter	Deklaration	Datentyp	Beschreibung
FB_ERR	OUTPUT	BOOL	Fehler nicht von SIFLOW FC070 gemeldet aber vom FB selbst erkannt. Wird für einen Zyklus eingestellt, wenn ein statischer Fehler auftritt oder kehrt zu normal zurück. Wenn bei FB SIFL_FC ein Verarbeitungsfehler auftritt, muss angenommen werden, dass die ausgegebenen Variablen nicht dem tatsächlichen Zustand in der Baugruppe entsprechen. Nummer des FB-Fehlers, siehe FB_ERR_C:
			1: statischer Fehler vorhanden
			0: kein statischer Fehler
FB_ERR_C	OUTPUT	BYTE	Nummer des FB-Fehlers:
			 Bit 0: DB_FLOW_PARA oder DB_FLOW_VEC fehlt oder hat falsche Länge
			 Bit 1: Fehler bei internem Aufruf von SFB 52 oder SFB 53, der Wert RET_VAL wird für einen Zyklus in DB_FLOW_PARA geschrieben
			 Bit 2: Fehler bei der Interpretation eines Datensatzes/Befehls, angegebener Datensatz oder angegebene Befehlsnummer ist falsch
			Bit 3: Lifebit-Fehler, SIFLOW FC070 antwortet nicht
			 Bit 4: E/A Eingabedaten können auch nach drei Versuchen nicht ausgelesen werden
			Bit 5: aktivierter Befehl wurde beim Neustart abgebrochen
			Bit 6: Reserviert
			Bit 7: Reserviert
START_UP	OUTPUT	BOOL	Starten der Funktionsbaugruppe:
			1: Vorgang noch nicht abgeschlossen
			O: Vorgang abgeschlossen
REF_COUNT	OUTPUT	BYTE	Refresh-Zähler: REF_COUNT wird von SIFLOW FC070 bei jeder Aktualisierung der Daten der Funktionsbaugruppe um einen Schritt erhöht. Der FB verwendet den REF_COUNT zur Konsistenzprüfung über den gesamten 16-Byte-Bereich der Funktionsbaugruppendaten.

* Die Adressen der Aufrufparameter (L_)VAR_ADR, (L_)VAR1_ADR, (L_)VAR2_ADR sind MODBUS-Adressen.

Siehe auch

Funktionen des Funktionsblocks S7 SIFL_FC (FB95) (Seite 60)

Weitere Parameter im Datenbaustein DB_FLOW_PARA (Seite 69)

7.4 Funktionen des Datenblocks DB_FLOW_VEC

Der Vektordatenbaustein DB_FLOW_VEC (DB16) enthält die Anzeiger auf die Datensätze in DB_FLOW_PARA und die darin eingegebenen auszuführenden Befehle.

7.5 Datensätze im Datenbaustein DB_FLOW_PARA

Sie müssen nur den Vektor DB in S7 CPU herunterladen, damit der FB SIFL_FC die darin eingegebenen Informationen verwenden kann. Der Vektor DB ist für die künftige Erstellung Ihres Anwenderprogramms nicht relevant, da das Programm mit einer symbolischen Zugriffsfunktion auf den CPU-Speicherbereich zugreift.

Hinweis

Nehmen Sie keine Änderungen an Inhalt, Länge und Struktur des Vektors DB vor.

Er muss für jede S7 CPU nur einmal geladen werden, unabhängig davon, wie viele SIFLOW FC070 Funktionsbaugruppen eingerichtet sind.

Sie können die Nummer des DB_FLOW_VEC frei wählen.

7.5 Datensätze im Datenbaustein DB_FLOW_PARA

DR Nr.	Inhalt	Lesen/ Schreiben	Beschreibung
Befe	hle		
	DB_Length		Länge des DB
	Max. Lifebit-Zyklus		Lifebit-Überwachung
	SFB-Fehlercode		Kommunikationsfehlercode SFB52 / SFB53
	Alle Aufrufparameter von FB95		Siehe Schritt 1: Parameter in DB17 (DB_FLOW_PARA) einlesen (Seite 87)
Para	imeter	·	
2	Einheiten	R/W	Einstellungen für Einheiten
3	Grundparameter	R/W	Einstellungen für Grundeinstellungen
4	Parameter Summenzähler	R / W	Einstellungen für Summenzähler 1 und 2
5	Parameter Digitalausgang	R/W	Einstellungen für Digitalausgang
6	Parameter Digitaleingang	R/W	Einstellungen für Digitaleingang
7	COM Schnittstellenparameter	R / W	Einstellungen für P-Bus und RS485-Schnittstelle
8	Datums- und Uhrzeitparameter	R/W	Einstellungen für Datum und Uhrzeit
9	Parameter Messaufnehmereigenschaften	R / W	Einstellung der Messaufnehmereigenschaften
10	Simulationsparameter	R/W	Einstellung der Simulationswerte
11	Parameter Prozessvoreinstellungen	R/W	Einstellung der Standard- Prozesseinstellungen
12	Grenzparameter	R/W	Einstellung der Standard-Grenzwerte
39	CT-Parameter	R/W (Lesen/Sc hreiben)	Einstellungen der CT-Parameter
Proz	ess, Service, Produktdaten		

7.6 Weitere Parameter im Datenbaustein DB_FLOW_PARA

DR Nr.	Inhalt	Lesen/ Schreiben	Beschreibung
30	Durchflussmesser Prozessinformationen	R	Aktuelle Prozessdaten
31	Serviceinformationen	R	Service-Informationsdaten
32	Messumformer-Informationen	R	Messumformer-Daten
33	Messaufnehmer-Informationen	R	Messaufnehmer-Daten
34	Kunden-Informationen	R	Kunden-Daten
35	MODBUS ID-Informationen	R	MODBUS Daten
36	MODBUS Serviceinformationen	R	MODBUS Daten
37	CT-Werte	R	CT-Daten

Hinweis

Die oben aufgelisteten Datensätze werden in den folgenden Abschnitten detailgenau beschrieben. Bitte beachten Sie, dass die Mindest- und Höchstwerte in den Tabellen sich zur besseren Übersicht in getrennten Datensätzen befinden. Die Beziehung zwischen einem Datensatz und seinen zugehörigen Mindest-/Höchstwerten ist folgendermaßen:

- Mindestwerte: DR Nr. + 40 entspricht dem zugehörigen "Mindest"-Datensatz;
- Höchstwerte: DR Nr. + 80 entspricht dem zugehörigen "Höchst"-Datensatz.

Beispiel: Die Mindestwerte für Datensatz 4 befinden sich in DR 44, und die Höchstwerte in DR 84.

Die Mindest-/Höchstwerte sind lediglich baugruppeninterne Werte, d. h., das Anwenderprogramm hat keinen Zugriff auf die Mindest-/Höchstdatensätze.

7.6 Weitere Parameter im Datenbaustein DB_FLOW_PARA

Tabelle 7-2	Weitere Parameter im	Datenbaustein DB	_FLOW_PARA
-------------	----------------------	------------------	------------

Offset im DB	Offset im DR	Symbolischer Name	Datentyp	Beschreibung
0.0	0.0	i_DB_Length	INT	Länge des DB
2.0	2.0	i_MaxLifeBitCyc	INT	Lifebit-Überwachung
4.0	4.0	w_SFC_ERR_C	WORD	Kommunikationsfehlercode SFB52/53
6.0	6.0	i_CMD_INPUT	INT	Auszuführender Befehlscode
8.0	8.0	i_VAR_ADRESS	INT	Adresse der Eingangsvariablen
10.0	10.0	d_VAR_VALUE	DWORD	Adresse der Eingangsvariablen
14.0	14.0	w_DIG_OUTPUT	WORD	Digitalausgangssteuerung
16.0	16.0	i_VAR1_ADR	INT	Adresse der Ausgangsvariablen 1
18.0	18.0	i_VAR2_ADR	INT	Adresse der Ausgangsvariablen 2
20.0	20.0	b_CMD_ERR_CODE	BYTE	Fehler bei Ausführung des Befehls
21.0	21.0	b_REFRESH_COUNTER	BYTE	Refresh-Zähler

7.6 Weitere Parameter im Datenbaustein DB_FLOW_PARA

Offset im DB	Offset im DR	Symbolischer Name	Datentyp	Beschreibung
22.0	22.0	d_VAR1_VALUE	DWORD	Wert der Ausgangsvariablen 1 *
26.0	26.0	d_VAR2_VALUE	DWORD	Wert der Ausgangsvariablen 2 *
30.0	30.0	i_LAST_VAR_ADR	INT	Aktuelle Adresse der Eingabevariablen
32.0	32.0	d_LAST_VAR_VALUE	DWORD	Aktueller Wert der Eingabevariablen
36.0	36.0	w_LAST_DIGITAL_OUT	WORD	Aktueller Digitalausgang
38.0	38.0	i_LAST_VAR1_ADR	INT	Aktuelle Adresse der Ausgangsvariablen 1
40.0	40.0	i_LAST_VAR2_ADR	INT	Aktuelle Adresse der Ausgangsvariablen 2
42.0	42.0	d_SC_STATUS	DWORD	Status der Funktionsbaugruppe
46.0	46.0	b_ERR_MSG_TYPE	BYTE	Typ der Fehlermeldung der Funktionsbaugruppe
47.0	47.0	b_ERR_MSG_CODE	BYTE	Nummer der Fehlermeldung der Funktionsbaugruppe
48.0	48.0	b_FB_ERR_CODE	BYTE	Nummer des FB-Fehlers
49.0	49.0	bo_CMD_IN_PROGRESS	BOOL	Befehl wird ausgeführt
49.1	49.1	bo_CMD_FINISHED_OK	BOOL	Befehl ordnungsgemäß ausgeführt
49.2	49.2	bo_CMD_ERR	BOOL	Fehler bei Ausführung des Befehls
49.3	49.3	bo_VAR1_OK	BOOL	VAR1_VAL ist der aktuelle Wert von VAR1_ADR
49.4	49.4	bo_VAR2_OK	BOOL	VAR2_VAL ist der aktuelle Wert von VAR2_ADR
49.5	49.5	bo_FB_ERR	BOOL	Fehler vom FB selbst erkannt.
49.6	49.6	bo_ERR_MSG	BOOL	Neue Fehlermeldung vorhanden
49.7	49.7	bo_START_UP_IN_PROG RESS	BOOL	Starten der Funktionsbaugruppe
50.0	50.0	bo_CMD_ENABLE	BOOL	Ausführung des Befehls
50.1	50.1	bo_ERR_MSG_QUIT	BOOL	Benutzerbestätigung der Fehlermeldung
52.0	52.0	s_CMD1	STRUCT	Befehl Eingang 1
52.0	0.0	i_CMD1_Code	INT	Befehlscode
54.0	2.0	bo_CMD1_Trigger	BOOL	Befehl aktivieren
54.1	2.1	bo_CMD1_InProgress	BOOL	Befehl wird ausgeführt
54.2	2.2	bo_CMD1_FinishedOk	BOOL	Befehl ordnungsgemäß ausgeführt
54.3	2.3	bo_CMD1_FinishedError	BOOL	Fehler bei Ausführung des Befehls
56.0	56.0	s_CMD2	STRUCT	Befehl Eingang 2
56.0	0.0	i_CMD2_Code	INT	Befehlscode
58.0	2.0	bo_CMD2_Trigger	BOOL	Befehl aktivieren
58.1	2.1	bo_CMD2_InProgress	BOOL	Befehl wird ausgeführt
58.2	2.2	bo_CMD2_FinishedOk	BOOL	Befehl ordnungsgemäß ausgeführt
58.3	2.3	bo_CMD2_FinishedError	BOOL	Fehler bei Ausführung des Befehls
60.0	60.0	s_CMD3	STRUCT	Befehl Eingang 3
60.0	0.0	i_CMD3_Code	INT	Befehlscode
62.0	2.0	bo_CMD3_Trigger	BOOL	Befehl aktivieren
62.1	2.1	bo_CMD3_InProgress	BOOL	Befehl wird ausgeführt
62.2	2.2	bo_CMD3_FinishedOk	BOOL	Befehl ordnungsgemäß ausgeführt
62.3	2.3	bo_CMD3_FinishedError	BOOL	Fehler bei Ausführung des Befehls
64.0	64.0	w_DB_RES89	WORD	

7.7 Beispiele

Offset im DB	Offset im DR	Symbolischer Name	Datentyp	Beschreibung
66.0	66.0	w_DB_RES90	WORD	
68.0	68.0	w_DB_RES91	WORD	
70.0	70.0	w_DB_RES92	WORD	
72.0	72.0	w_DB_RES93	WORD	
74.0	74.0	w_DB_RES94	WORD	
76.0	76.0	w_DB_RES95	WORD	
78.0	78.0	w_OCX_WRITE_DATA	WORD	Daten von OCX-Schreibvorgang (Zufalls- /Kontrollnummer)

7.7 Beispiele

7.7.1 Prozesswerte für Massendurchfluss und Totalizer 2 auslesen

AWL			
CALL FB95,DB195	Aufruf des FB "SIFL FC" mit Instanz-DB 195 (z. B.)		
ADDR := 280	Anfangsadresse der SIFLOW FC070 (z. B.)		
DB FLOW PARA :=17	Nummer des Parameter-Datenbausteins		
DB FLOW VEC :=16	Nummer des Vektor-Datenbausteins		
CMD_IN :=703	Auszuführender Befehl, hier: Übernehmen der Adresse 3000 am Ausgang L VAR1 ADR		
VAR_ADR :=	nicht relevant		
VAR VAL :=	nicht relevant		
DIG OUT :=	nicht relevant		
VAR1 ADR := 3000	MODBUS-Adresse vom Massendurchfluss		
VAR2 ADR :=	nicht relevant		
CMD INPR :=	1=Befehl wird abgearbeitet (in progress)		
CMD FOK :=	1=Befehl wurde korrekt ausgeführt		
CMD ERR :=	1=Befehl wurde nicht ausgeführt		
CMD ERR C :=	Fehlercode bei nicht ausgeführtem Befehl		
REF COUNT :=	nicht relevant		
VAR1 VAL :=	Wert der von der Adresse L VAR1 ADR gelesen wird		
VAR2 VAL :=	nicht relevant		
L VAR ADR :=	nicht relevant		
L VAR VAL :=	nicht relevant		
L DIG OUT :=	nicht relevant		
L VAR1 ADR :=	Adresse von der der Wert VAR1 VAL gelesen wird		
L_VAR2_ADR :=	nicht relevant		
SC STATUS :=	nicht relevant		
ERR MSG :=	1=neue Fehlermeldung vorhanden		
ERR MSG TYPE :=	0: kein Fehler; 1, 2, 4=Typ der Fehlermeldung		
ERR_MSG_C :=	Nummer der Fehlermeldung		
FB ERR :=	FB-Fehler		
FB ERR C :=	Nummer des FB-Fehlers		
START UP :=	nicht relevant		
VAR1_OK :=	1=wenn VAR1 ADR = L VAR1 ADR		
VAR2 OK :=	1=wenn VAR2 ADR = L VAR2 ADR		
CMD EN :=1	1=Ausführung des Befehls CMD IN		
ERR MSG Q :=	1=Anwenderquittierung der Fehlermeldung an ERR MSG C		

Tabelle 7-3 Massendurchfluss am Ausgang VAR1_VAL einstellen

7.7 Beispiele

Nach erfolgreichem Durchführen des Befehls 703 steht der Massendurchfluss nun am Ausgang VAR1_VAL und die Adresse 3000 am Ausgang L_VAR1_ADR an. Außerdem ist VAR1_OK = 1, weil VAR1_ADR und L_VAR1_ADR nun gleich sind.

AWL	
CALL FB95, DB195	Aufruf des FB "SIFL FC" mit Instanz-DB 195 (z.B.)
ADDR := 280	Anfangsadresse der SIFLOW FC070 (z. B.)
DB FLOW PARA :=17	Nummer des Parameter-Datenbausteins
DB FLOW VEC :=16	Nummer des Vektor-Datenbausteins
CMD_IN :=704	Auszuführender Befehl, hier: Übernehmen der Adresse 3024 am Ausgang L VAR2 ADR
VAR ADR :=	nicht relevant
VAR VAL :=	nicht relevant
DIG OUT :=	nicht relevant
VAR1 ADR := 3000	MODBUS-Adresse vom Massendurchfluss
VAR2 ADR := 3024	MODBUS-Adresse vom Totalizer 2
CMD INPR :=	1=Befehl wird abgearbeitet (in progress)
CMD FOK :=	1=Befehl wurde korrekt ausgeführt
CMD ERR :=	1=Befehl wurde nicht ausgeführt
CMD_ERR_C :=	Fehlercode bei nicht ausgeführtem Befehl
REF COUNT :=	nicht relevant
VAR1 VAL :=	Massendurchfluss
VAR2 VAL :=	Wert der von der Adresse L VAR2 ADR gelesen wird
L VAR ADR :=	nicht relevant
L VAR VAL :=	nicht relevant
L DIG OUT :=	nicht relevant
L VAR1 ADR := 3000	MODBUS-Adresse vom Massendurchfluss
L VAR2 ADR :=	Adresse von der der Wert VAR1 VAL gelesen wird
SC STATUS :=	nicht relevant
ERR MSG :=	1=neue Fehlermeldung vorhanden
ERR MSG TYPE :=	0: kein Fehler; 1, 2, 4=Typ der Fehlermeldung
ERR MSG C :=	Nummer der Fehlermeldung
FB ERR :=	FB-Fehler
FB ERR C :=	Nummer des FB-Fehlers
START UP :=	nicht relevant
VAR1 OK := 1	1=wenn VAR1 ADR = L VAR1 ADR
VAR2 OK :=	1=wenn VAR2 ADR = L VAR2 ADR
CMD EN :=1	1=Ausführung des Befehls CMD IN
ERR MSG Q :=	1=Anwenderquittierung der Fehlermeldung an ERR MSG C

Tabelle 7-4 Totalizer 2 am Ausgang VAR2_VAL einstellen

Nach erfolgreichem Durchführen des Befehls 704 steht der Wert des Totalizer 2 nun am Ausgang VAR2_VAL und die Adresse 3024 am Ausgang L_VAR2_ADR an. Außerdem ist VAR2_OK = 1, weil VAR2_ADR und L_VAR2_ADR nun gleich sind.
7.7 Beispiele

7.7.2 Totalizer 2 zurücksetzen

Nachdem Massendurchfluss und Totalizer 2 ausgelesen wurden, soll nun Totalizer 2 zurückgesetzt werden.

AWL	
CALL FB95,DB195	Aufruf des FB "SIFL FC" mit Instanz-DB 195 (z.B.)
ADDR := 280	Anfangsadresse der SIFLOW FC070 (z. B.)
DB FLOW PARA :=	17 Nummer des Parameter-Datenbausteins
DB FLOW VEC :=	16 Nummer des Vektor-Datenbausteins
CMD IN :=	10 Auszuführender Befehl, hier: Zurücksetzen des Totalizer 2
VAR ADR :=	nicht relevant
VAR VAL :=	nicht relevant
DIG OUT :=	nicht relevant
VAR1 ADR :=	3000 Modbusadresse vom Massendurchfluss
VAR2 ADR :=	3024 Modbusadresse vom Totalizer 2
CMD INPR :=	1=Befehl wird abgearbeitet (in progress)
CMD FOK :=	1=Befehl wurde korrekt ausgeführt
CMD ERR :=	1=Befehl wurde nicht ausgeführt
CMD ERR C :=	Fehlercode bei nicht ausgeführtem Befehl
REF COUNT :=	nicht relevant
VAR1 VAL :=	Massendurchfluss
VAR2 VAL :=	Totalizer 2
L VAR ADR :=	nicht relevant
L VAR VAL :=	nicht relevant
L DIG OUT :=	nicht relevant
L VAR1 ADR :=	3000 Modbusadresse vom Massendurchfluss
L VAR2 ADR :=	3024 Modbusadresse vom Totalizer 2
SC STATUS :=	nicht relevant
ERR MSG :=	1=neue Fehlermeldung vorhanden
ERR MSG TYPE :=	0: kein Fehler; 1, 2, 4=Typ der Fehlermeldung
ERR MSG C :=	Nummer der Fehlermeldung
FB ERR :=	FB-Fehler
FB ERR C :=	Nummer des FB-Fehlers
START UP :=	nicht relevant
VAR1 OK := 1	1=wenn VAR1 ADR = L VAR1 ADR
VAR2 OK := 1	1=wenn VAR2 ADR = L VAR2 ADR
CMD EN := 1	1=Ausführung des Befehls CMD IN
ERR MSG Q :=	1=Anwenderquittierung der Fehlermeldung an ERR MSG C

Tabelle 7-5 Totalizer 2 zurücksetzen

Nach erfolgreichem Durchführen des Befehls 10 wird Totalizer 2, der zuvor am Ausgang VAR2_VAL eingestellt wurde, auf 0 zurückgesetzt.

7.7.3 Batchbetrieb einrichten

Zuerst werden alle Datensätze gelesen (DR2-12 und DR30-36, DR37 und DR39).

E.

7.7 Beispiele

STL	
CALL FB95,DB195	Aufruf des FB "SIFL FC" mit Instanz-DB 195 (Beispiel)
ADDR := 280	Startadresse der SIFLOW FC070 (Beispiel)
DB FLOW PARA :=	17 Nummer des Parameterdatenbausteins
DB FLOW VEC :=	16 Nummer des Vektordatenbausteins
CMD IN :=649	Auszuführender Befehl, hier: Alle Datensätze lesen
VAR ADR :=	nicht relevant
VAR VAL :=	nicht relevant
DIG OUT :=	nicht relevant
VAR1 ADR :=	3000 MODBUS-Adresse für Massedurchfluss
VAR2_ADR :=	3024 MODBUS-Adresse für Summenzähler 2
CMD INPR :=	1=Befehl wird gerade verarbeitet
CMD FOK :=	1=Befehl wurde korrekt ausgeführt
CMD ERR :=	1=Befehl wurde nicht ausgeführt
CMD ERR C :=	Fehlercode bei nicht ausgeführtem Befehl
REF COUNT :=	nicht relevant
VAR1 VAL :=	Massedurchfluss
VAR2 VAL :=	Summenzähler 2
L_VAR_ADR :=	nicht relevant
L VAR VAL :=	nicht relevant
L DIG OUT :=	nicht relevant
L VAR1 ADR :=	3000 MODBUS-Adresse für Massedurchfluss
L_VAR2_ADR :=	3024 MODBUS-Adresse für Summenzähler 2
SC STATUS :=	nicht relevant
ERR MSG :=	1=neue Fehlermeldung vorhanden
ERR MSG TYPE :=	0: kein Fehler; 1, 2, 4=Typ der Fehlermeldung
ERR_MSG_C :=	Nummer der Fehlermeldung
FB ERR :=	FB-Fehler
FB ERR C :=	Nummer des FB-Fehlers
START UP :=	nicht relevant
VAR1 OK := 1	1=Wenn VAR1 ADR = L VAR1 ADR
VAR2 OK := 1	1=Wenn VAR2 ADR = L VAR2 ADR
CMD EN :=1	1=Ausführung des Befehls CMD IN
ERR MSG Q :=	1=Benutzerbestätigung von Fehlermeldung an ERR MSG C

Tabelle 7-6 Alle Datensätze lesen

Als Nächstes werden für den Batchbetrieb Einstellungen in den Datensätzen vorgenommen.

```
//Ausgang auf Batch stellen
         6
L
         "DB FLOW_PARA".s_DigitalOutputParam.b_Dig_out_func
Т
//Batch auf Massedurchfluss setzen
//Batch-Zähler einen Schritt hochzählen
//LED DO1 soll leuchten, während Batch ausgeführt wird
T.
         1
         "DB FLOW PARA".s_DigitalOutputParam.b_Batch_val_sel
Т
         "DB FLOW PARA".s DigitalOutputParam.b Batch count up down
Т
         "DB_FLOW_PARA".s_DigitalOutputParam.b_Batch_output_polarity
Т
//Zeitfehlerüberwachung deaktivieren
//Batchüberlaufüberwachung deaktivieren
T.
         0
Т
         "DB FLOW PARA".s DigitalOutputParam.b Batch time err on off
         "DB_FLOW_PARA".s_DigitalOutputParam.b_Batch_overrun_on_off
Т
//Batchmenge festlegen
         1.000000e+000
L
Т
         "DB FLOW PARA".s ProcessPresetParam.r Batch quantity
//Batchkompensation, Führungskonstante und Pegel Stufe 2 auf 0 (Voreinstellung)
setzen
         0.000000e+000
L
         "DB_FLOW_PARA".s_ProcessPresetParam.r_Batch_compens
Т
         "DB_FLOW_PARA".s_ProcessPresetParam.r_Batch_lead_const
Т
         "DB_FLOW_PARA".s_ProcessPresetParam.r_Batch_two_stage_lev
Т
```

7.7 Beispiele

Da die geänderten Daten noch aus der Funktionsbaugruppe übernommen werden müssen, werden alle Datensätze geschrieben (DR2-12 und DR39).

STL	
CALL FB95,DB195	Aufruf des FB "SIFL FC" mit Instanz-DB 195 (Beispiel)
ADDR := 280	Startadresse der SIFLOW FC070 (Beispiel)
DB FLOW PARA :=17	Nummer des Parameterdatenbausteins
DB FLOW VEC :=16	Nummer des Vektordatenbausteins
CMD IN :=699	Auszuführender Befehl, hier: Alle Datensätze schreiben
VAR ADR :=	nicht relevant
VAR VAL :=	nicht relevant
DIG OUT :=	nicht relevant
VAR1 ADR := 3000	MODBUS-Adresse für Massedurchfluss
VAR2_ADR := 3024	MODBUS-Adresse für Summenzähler 2
CMD INPR :=	1=Befehl wird gerade verarbeitet
CMD FOK :=	1=Befehl wurde korrekt ausgeführt
CMD ERR :=	1=Befehl wurde nicht ausgeführt
CMD ERR C :=	Fehlercode bei nicht ausgeführtem Befehl
REF COUNT :=	nicht relevant
VAR1 VAL :=	Massedurchfluss
VAR2 VAL :=	Summenzähler 2
L VAR ADR :=	nicht relevant
L VAR VAL :=	nicht relevant
L DIG OUT :=	nicht relevant
L VAR1 ADR := 3000	MODBUS-Adresse für Massedurchfluss
L VAR2 ADR := 3024	MODBUS-Adresse für Summenzähler 2
SC STATUS :=	nicht relevant
ERR MSG :=	1=neue Fehlermeldung vorhanden
ERR MSG TYPE :=	0: kein Fehler; 1, 2, 4=Typ der Fehlermeldung
ERR MSG C :=	Nummer der Fehlermeldung
FB ERR :=	FB-Fehler
FB ERR C :=	Nummer des FB-Fehlers
START UP :=	nicht relevant
VAR1 OK := 1	1=Wenn VAR1 ADR = L VAR1 ADR
VAR2 OK := 1	1=Wenn VAR2 ADR = L VAR2 ADR
CMD EN :=1	1=Ausführung des Befehls CMD IN
ERR MSG Q :=	1=Benutzerbestätigung von Fehlermeldung an ERR MSG C

Tabelle 7-7 Alle Datensätze schreiben

Der Batch kann jetzt mit Befehl 1 gestartet werden.

|--|

STL	
CALL FB95,DB195	Aufruf des FB "SIFL FC" mit Instanz-DB 195 (Beispiel)
ADDR := 280	Startadresse der SIFLOW FC070 (Beispiel)
DB FLOW PARA :=	17 Nummer des Parameterdatenbausteins
DB FLOW VEC :=	16 Nummer des Vektordatenbausteins
CMD IN :=1	Auszuführender Befehl, hier: Batch starten
VAR ADR :=	nicht relevant
VAR VAL :=	nicht relevant
DIG OUT :=	nicht relevant
VAR1 ADR :=	3000 MODBUS-Adresse für Massedurchfluss
VAR2 ADR :=	3024 MODBUS-Adresse für Summenzähler 2
CMD INPR :=	1=Befehl wird gerade verarbeitet
CMD FOK :=	1=Befehl wurde korrekt ausgeführt

7.7 Beispiele

STL	
CMD ERR :=	1=Befehl wurde nicht ausgeführt
CMD ERR C :=	Fehlercode bei nicht ausgeführtem Befehl
REF COUNT :=	nicht relevant
VAR1 VAL :=	Massedurchfluss
VAR2 VAL :=	Summenzähler 2
L VAR ADR :=	nicht relevant
L VAR VAL :=	nicht relevant
L DIG OUT :=	nicht relevant
L VAR1 ADR :=	3000 MODBUS-Adresse für Massedurchfluss
L VAR2 ADR :=	3024 MODBUS-Adresse für Summenzähler 2
SC STATUS := MD100	Status der Baugruppe
ERR MSG :=	1=neue Fehlermeldung vorhanden
ERR MSG TYPE :=	0: kein Fehler; 1, 2, 4=Typ der Fehlermeldung
ERR MSG C :=	Nummer der Fehlermeldung
FB ERR :=	FB-Fehler
FB ERR C :=	Nummer des FB-Fehlers
START UP :=	nicht relevant
VAR1 OK := 1	1=Wenn VAR1 ADR = L VAR1 ADR
VAR2 OK := 1	1=Wenn VAR2 ADR = L VAR2 ADR
CMD EN :=1	1=Ausführung des Befehls CMD IN
ERR MSG Q :=	1=Benutzerbestätigung von Fehlermeldung an ERR MSG C

LED DO1 leuchtet während Batch-Ausführung.

Der Fortschritt des Batchvorgangs wird an Ausgang VAR2_VAL angezeigt. Wenn Summenzähler 2 an Ausgang VAR2_VAL die Batchmenge erreicht, erlischt LED DO1. Am Ausgang VAR1_VAR steht weiterhin der aktuelle Massedurchfluss an.

Dadurch lässt sich die Gesamtdauer des Batchvorgangs nach folgender Formel errechnen: T = Batchmenge/Massedurchfluss

Außerdem steht für die Dauer des Batchvorgangs auch das Statusbit ST_BATCHING an.

Dies lässt sich folgendermaßen nachvollziehen:

L	MD	100
L	1	
AD		
L	1	
==D		
S	А	0.0
TAK		
L	0	
==D		
R	А	0.0

Wenn das Statusbit ST_BATCHING aktiv ist, wird der Ausgang 0.0 einer digitalen Ausgabebaugruppe gesetzt.

Inbetriebnahme mit SIMATIC PDM

8.1 Allgemeine Anweisungen

SIMATIC PDM ist ein Softwarepaket für die Projektierung, Parametrierung, Inbetriebnahme und Wartung von Geräten (z. B. Schallwandler), sowie für die Projektierung von Netzwerken und PCs.

SIMATIC PDM ermöglicht unter anderem eine einfache Prozessbeobachtung der Prozesswerte, Alarme und Zustands-/Diagnosesignale des Gerätes.

Anforderungen

Vor der Inbetriebnahme müssen folgende Arbeitsschritte ausgeführt werden:

- Installation des SIMATIC PDM und SIFLOW FC070 PDM Treibers. (Siehe auch "Installation" (Seite 54)).
- Anschluss der Modbus Schnittstelle. (Siehe auch "Anschließen" (Seite 47)).

Schrittanleitung zur Inbetriebnahme mit PDM

Die folgenden Schritte sind ein Beispiel dafür, wie die Inbetriebnahme der SIFLOW FC070 durchgeführt werden kann.

Hinweis

Das Beispiel deckt nur die Messung von Massendurchfluss ab, entsprechende Parameter sind jedoch für alle anderen Messungen vorhanden.

Die Schritte sind in folgende Abschnitte aufgeteilt:

- 1. Konfiguration beschreibt die Einstellung der Grundparameter des Durchflussmessgeräts. Schritt 1 in diesem Abschnitt (alle Parameter von SIFLOW lesen) muss vor jeglicher Änderung von Parametern durchgeführt werden.
- 2. Systemoptimierung beschreibt, wie das System optimiert werden kann, um höhere Leistungs- und Präzisionswerte zu erhalten. Dieser Schritt muss durchgeführt werden, wenn eine Optimierung des Systems erforderlich ist.
- 3. Betrieb beschreibt die Visualisierung aller verfügbaren Prozesswerte.

Schritt	Beschreibung	Bereich
STEP 1	Lesen aller Parameter von der SIFLOW in DB_FLOW_PARA	KONFIGURATION
STEP 2	Einstellen der Grundparameter in SIFLOW	
STEP 3	Nullpunkteinstellung	SYSTEMOPTIMIERUNG
STEP 4	Ansicht der Prozessvariablen	BETRIEB

8.2 Schritt 1: Lesen der Parameter von der SIFLOW FC070

8.2 Schritt 1: Lesen der Parameter von der SIFLOW FC070

Vor der Parametrierung müssen alle Parameter von der SIFLOW Baugruppe in die Offline Tabelle von SIMATIC PDM eingelesen werden. Dieser Schritt ist erforderlich, da die Offline Tabelle nur voreingestellte Daten enthält.

- 1. Öffnen Sie den PDM Device Driver.
- Wählen Sie "Device->Upload to PC/PG .." Wählen Sie "Execute even if the device TAG does not match the project data TAG." und klicken Sie auf "OK", um alle Parameter in die Offline Tabelle zu lesen. Nach Schließen des Dialogfensters sollten alle geladenen Parameter im Statusfeld der PDM Tabelle "Loaded" anzeigen.

8.3 Schritt 2: Einstellen Grundparameter

In allen Anwendungen müssen vor der Konfiguration der Parameter folgende Punkte definiert werden:

- Messbereich der Applikation (min max)
- Einheit des Messbereichs

Je nach Anwendung, Messbereich und Maßeinheiten müssen die folgenden Parameter geändert werden:

- Einheit Massendurchfluss
- Massendurchfluss-Endwert
- Massendurchfluss-Anfangswert

Beispiel

- Als Maßeinheit muss kg/h verwendet werden.
- Der Endwert des Massedurchflusses muss 250 kg/h betragen.
- Der Mindestwert des Massedurchflusses muss 0 kg/h betragen.

Der folgende Screenshot zeigt die Änderungen in der PDM-Tabelle:

8.4 Schritt 3: Systemoptimierung

SIMATIC PDM - SIFLOW FC070 [Projekt: SIFLOW_FC070_Demo_¥2_2 C:\Pro	gram Files\SIEMENS\STEP7\s7proj\SIFLOW_	F]
Datei Gerät Ansicht Extras Hilfe			
. 4 .	<u>k?</u>		
⊡ · 1 SIFLOW FC070	Parameter	Wert	Einheit
E SIFLOW FC070	» » » Massedurchfluss		
	Einheit	kg/h	
Setup	Messanfang	0,000000	kg/h
Betriebsbedingungen	Messende	20,000000	kg/h
Massedurchfluss	Sensor: Unterer Grenzwert	0	kg/h
Volumendurchfluss	Sensor: Oberer Grenzwert	125	kg/h

Einstellen der Grundparameter

- 1. Stellen Sie die Parameter im Ordner Output->Mass flow (Ausgang->Massendurchfluss) (siehe oben) auf die entsprechenden Werte ein.
- 2. Auswahl: "Device → Download to device...".
- 3. Wählen Sie "Execute even if the device TAG does not match the project data TAG" und klicken Sie auf "OK", um alle Parameter aus der Tabelle ins Gerät zu laden.

Hinweis

Wenn die SF-LED an der SIFLOW-Baugruppe rot leuchtet, ist ein Systemfehler aufgetreten.

Lesen Sie das Kapitel "Fehlerbehebung/FAQs" (Seite 179) und stellen Sie vor der Fortsetzung der Inbetriebnahme sicher, dass der Fehler behoben ist.

8.4 Schritt 3: Systemoptimierung

Das System des Durchflussmessgeräts wird durch eine Nullpunkteinstellung optimiert.

Nullpunkteinstellung durchführen

- 1. Installieren Sie Absperrvorrichtungen in der Rohrleitung. Die Vorrichtungen sollten nach Möglichkeit in Strömungsrichtung sowohl vor als auch hinter dem Messaufnehmer liegen. Andernfalls:
 - bei Horizontaleinbau auslassseitig
 - bei Vertikaleinbau einlassseitig.
- 2. Pumpen Sie (mind. 2 Minuten lang) Flüssigkeit mit maximaler Durchflussrate durch den Messaufnehmer, um die Bildung von Luftblasen in der Flüssigkeit zu vermeiden.

8.4 Schritt 3: Systemoptimierung

 Stoppen Sie während des Pumpvorgangs den Durchfluss, indem Sie erst das Auslassventil und dann das Einlassventil schließen. Warten Sie 1 Minute. Auf diese Weise tritt Nulldurchfluss ein, die Flüssigkeit im Messaufnehmer steht jedoch weiterhin unter Druck, wodurch das Ausgasen der Flüssigkeit (d. h. das Entweichen von Luft oder anderen Gasen) verhindert wird.

Hinweis

Der Durchfluss muss vollständig gestoppt und der Messaufnehmer vollständig mit Flüssigkeit gefüllt sein.

- Wählen Sie "Device->Zero adjust" (Gerät->Nulleinstellung) aus dem Hauptmenü von SIMATIC PDM, um eine automatische Nullpunkteinstellung durchzuführen. Das erscheinende Online Menü erlaubt die Konfiguration der entsprechenden Parameter und die Durchführung der automatischen Nullpunkteinstellung.
- Starten Sie die Nullpunkteinstellung durch Klick auf "Auto zero adjust". Sobald die Nullpunkteinstellung beendet ist, zeigt ein Meldungsfeld das Ergebnis der Nullpunkteinstellung.

Hinweis

Bei einer Fehlermeldung im Anschluss an die Nullpunkteinstellung lesen Sie bitte das Kapitel "Fehlerbehebung/FAQs" (Seite 179).

Inbetriebnahme mit SIMATIC PDM

8.5 Schritt 4: Ansicht der Prozessvariablen

8.5 Schritt 4: Ansicht der Prozessvariablen

Das System ist nun betriebsbereit.

- 1. Wählen Sie "View->Display" (Ansicht->Messwertanzeige) zur Ansicht aller Prozesswerte.
- 2. Überprüfen Sie, dass die angezeigten Prozesswerte den Erwartungswerten entsprechen.

Display - DI1.5 (Online)		×
Measured Value		
Mass Flow 1,6667 mg/s	Volume Flow	60,0000 mL/m
0,000000 mg/s 8333,3350 mg/s 16666,6699 mg/s	0,000000 mL/m 166,6667 mL/m	333,3333 mL/m
Density 50,3608 kg/m3	Fraction A (flow)	0,0000 kg/s
100,0000 kg/m3 1050,0000 kg/m3 2000,0000 kg/m3	0 kg/s 0,0028 kg/s	0,0056 kg/s
Temperature 23,79 °C	Fraction B (flow)	0,0000 kg/s
0,00 °C 62,50 °C 125,00 °C	0 kg/s 0,0028 kg/s	0,0056 kg/s
	Pct. fraction A. 100,0	%
Totalizer 1 494,9998 kg BATCH ACTIVE - Totalizer 2 not available.	System status	
Close Messages		Help

Bild 8-1 PDM Prozesswerte

Inbetriebnahme mit SIMATIC PDM

8.5 Schritt 4: Ansicht der Prozessvariablen

Inbetriebnahme mit SIMATIC S7

Dieses Kapitel liefert eine Anleitung zur schrittweisen Durchführung der Erstinbetriebnahme des SIFLOW FC070 Nicht-Ex-Moduls und der Ex-Ausführung in einer S7-300/400 Umgebung.

Das Kapitel bezieht sich auf einen PLC Beispielscode aus dem SIFLOW Startpaket, der sich auf der mit dem Produkt gelieferten CD befindet.

Nach Beenden dieser Schritte ist das System betriebsbereit.

Hinweis

Die in diesem Kapitel beschriebenen Schritte müssen unabhängig von der vorgesehenen Applikation immer ausgeführt werden.

Anforderungen

Es wird davon ausgegangen, dass der Benutzer mit der SIMATIC Manager Umgebung vertraut ist und die unten aufgeführten Schritte ausgeführt hat:

- Einbau des Messsystems bestehend aus einer SIFLOW FC070 und einem Messaufnehmer. (Siehe hierzu "Hardware einbauen und ausbauen (Seite 31)")
- Installation der S7 Bibliothek. (Siehe hierzu "Software-Installation (Seite 51)")
- Installation des HSP Package. (Siehe hierzu "Software-Installation (Seite 51)")

9.1 Einstellung der Grundparameter in HW-Konfig

Stellen Sie die statischen Grundparameter folgendermaßen ein:

Das Einfügen der SIFLOW FC070 Baugruppe in die HW-Konfig erfolgt durch "Drag-und-Drop" der Baugruppe in die Schiene mit S7-300 CPU oder ET-200M (siehe hierzu Installation des S7 Hardware Support Packages (Seite 51)).

- 1. Markieren Sie in HW-Konfig die SIFLOW Funktionsbaugruppe und wählen Sie den Menübefehl Bearbeiten > Objekteigenschaften.
- 2. Im Register Grundparameter stellen Sie die folgenden, statischen Grundparameter ein.

9.1 Einstellung der Grundparameter in HW-Konfig

Grundparameter	Wertebereich	Voreinstellung	Wirkungsbereich
Alarmgenerierung	JaNein	Nein	Funktionsbaugruppe
Alarmauswahl	 Keine Diagnose Prozess Diagnose + Prozess 	Diagnose + Prozess	
Reaktion auf CPU- STOP	 Beide Ausgänge deaktiviert Nur Ausgang 1 aktiviert Nur Ausgang 2 aktiviert Beide Ausgänge aktiviert Keine Reaktion 	Keine Reaktion	
Device Adresse*	1 247	1	

	Tabelle 9- 1	Statische Grundparameter von SIFLOW FC070
--	--------------	---

* Wird nur verwendet, wenn die DIP-Schalterstellung der Funktionsbaugruppenadresse = 0 ist.

Hinweis

Stellen Sie sicher, dass Sie für die Anfangsadressen der Aus- und Eingangsdatenbereiche pro SIFLOW FC070 die identischen Werte vergeben.

Hinweis

Stellen Sie sicher, dass Sie bei mehreren eingesetzten Funktionsbaugruppen im Baugruppenträger bzw. am MODBUS jeder Funktionsbaugruppe eine unterschiedliche Device Adresse zuweisen.

Diagnosealarm

Wenn Sie den Diagnosealarm freigeben, wird eine ggf. anstehende Diagnose-Information in den Diagnosedatensatz eingetragen und löst einen Diagnosealarm (OB82) aus.

Prozessalarme

Wenn Sie den Prozessalarm freigeben, können Sie 8 Prozessalarme im Datensatz 7 parametrieren. Bestimmte Ereignisse im Prozess, z. B. Über- oder Unterschreiten eines Grenzwertes, lösen einen Prozessalarm aus, und der OB40 wird aufgerufen.

Hinweis

Steht der Parameter "Alarmgenerierung" auf "Nein", so ist der Parameter "Alarmauswahl" unwirksam.

9.2 Schrittanleitung für die Inbetriebnahme mit S7

Das folgende, als Schrittanleitung aufgebaute Beispiel bezieht sich auf die Demo-Software, die mit dem Starterpaket ausgeliefert wird.

Im Beispiel wird angenommen, dass:

- es sich um einen Messaufnehmer Typ FC300 DN 4 handelt
- die SIFL_FC S7 Bibliothek "wie besehen" verwendet wird (keine Umbenennung der FBs und DBs)
 - FB95 = SIFL_FC
 - DB17 = DB_FLOW_PARA
 - DB16 = DB_FLOW_VECTOR

Hinweis

Das Beispiel deckt nur die Messung von Massedurchfluss ab, entsprechende Parameter sind jedoch für alle anderen Messungen vorhanden.

Inhalt

Die Schritte sind in folgende Abschnitte aufgeteilt

- Der Abschnitt "Konfiguration" beschreibt, wie die Grundparameter des Durchflussmessgeräts eingestellt werden.
 Schritt 1 in diesem Abschnitt (alle Parameter von SIFLOW lesen) sollte vor jeglicher Parameteränderung in der Baugruppe immer durchgeführt werden.
 Dieser Abschnitt kann in PDM oder in S7 ausgeführt werden.
- Der Abschnitt "Systemoptimierung" beschreibt, wie das System optimiert werden kann, um eine höhere Leistung und Präzision zu erhalten. Dieser Schritt muss durchgeführt werden, wenn eine Optimierung des Systems erforderlich ist. Dieser Abschnitt kann in PDM oder in S7 ausgeführt werden.
- Der Abschnitt "Betrieb" beschreibt, wie das System betriebsbereit gemacht wird.
 Dieser Abschnitt berücksichtigt die Parameter, die bei der zyklischen Kommunikation des SPS Programms verwendet werden (d. h. Prozessvariable und Serviceinformationen).

Schritt	Beschreibung	Bereich
STEP 1	Lesen aller Parameter von der SIFLOW in DB_FLOW_PARA	KONFIGURATION
STEP 2	Einstellen der Grundparameter in SIFLOW	
STEP 3	Nullpunkteinstellung	SYSTEMOPTIMIERUNG
STEP 4	System betriebsbereit	BETRIEB

S7 Demo-Software

Folgende Software wird in der Schrittanleitung verwendet:

• S7 Bibliothek mit S7 Demo-Software, in Ladder und STL geschrieben.

Die Demo-Software zeigt anhand von Beispielen, welche Parameter und Befehle eingestellt und ausgeführt werden müssen, um das System betriebsbereit zu machen.

Das Demo-Programm umfasst 4 Schritte. Jeder Schritt umfasst einen oder mehrere S7 Programm-Ordner (siehe folgenden Screenshot). Um die einzelnen Schritte auszuführen, kopieren Sie den Bausteinindex vom S7 Programm des entsprechenden Schritts (z. B. "S7 Prog_Step1->Blocks") in "S7 Prog_Actual->Blocks".

🗿 File Edit Insert PLC View Options Wir	ndow Help	
D 😅 🎛 🕽 X 🖻 🛍 🔍 S		< No Filter >
∃- 🞒 GettingStarted	Object name	Symbolic name
E SIMATIC 300(1)	System data	
🖻 – 🚺 CPU 315-2 DP	🖽 OB1	
S7 Prog_Actual	🖬 0B82	1/0_FLT1
	🚛 FB 95	SIFL_FC
	🖬 FC95	SIFL_DATA
tires S7 Prog_Allisteps	🖽 DB16	DB_FLOW_VEC
	🖬 DB17	DB_FLOW_PARA
	🖬 DB95	SIFL_DATA(InstanceDB)
T S7 Prog. Step2	🖬 UDT18	UDT_SIFL_FC
T ST Prog Step2	ERROR_MSG	ERROR_MSG
	STEP1	STEP1
F S7 Prog Step4 Approach2		

Bild 9-1 S7 Programmordner

Bild 9-2 SIFL_FC (FB 95) Grundparametereinstellung

Hinweis

Die Demo-Software kann frei geändert, erweitert (ausgenommen FB "SIFL_FC", DB_FLOW_VECTOR und DB_FLOW_PARA) oder kopiert werden.

Alle Ansprüche, die sich aus der Verwendung der Demo-Software ergeben, sind ausgeschlossen.

9.2.1 Schritt 1: Parameter in DB17 (DB_FLOW_PARA) einlesen

Vor der Parametrierung müssen alle Parameter von der SIFLOW-Baugruppe in DB_FLOW_PARA eingelesen werden, da DB_FLOW_PARA nur voreingestellte, keine messaufnehmerspezifischen Daten enthält. Messaufnehmerspezifische Daten werden im SENSORPROM-Baustein abgelegt, der sich auf der Rückseite der SIFLOW-Baugruppe befindet.

Alle Parameter aus SIFLOW lesen

- 1. Kopieren Sie den Index von Ordner"S7 Prog_Step1->Blocks" in den Ordner "S7 Prog_Actual->Blocks" und laden ihn in die Steuerung.
- 2. Bereiten Sie ein Programm vor wie im Folgenden dargestellt.

Schritt 1: Alle Parameter aus SIFLOW lesen (CMD_IN = 649)

Wenn das Bit "RD_ALL" gesetzt ist, leitet SIFL_FC das Lesen aller Daten aus der Baugruppe SIFLOW FC070 ein und legt die Daten im DB mit der Nummer ab, die mit DB_PARA adressiert wird. Dies ist in diesem Fall DB17 (andere Bezeichnung: DB_FLOW_PARA).

Bild 9-3 Schritt 1: Alle Parameter aus SIFLOW lesen (CMD_IN = 649)

- Öffnen Sie die Variablentabelle "STEP1" und setzen Sie Bit "RD_ALL" auf wahr, um alle Parameter von SIFLOW in DB17 (DB_FLOW_PARA) einzulesen. Jetzt sind alle Parameter aus der SIFLOW FC070 in DB_FLOW_PARA aktualisiert.
- Stellen Sie sicher, dass Parameter Seriennummer des Messaufnehmers in der Variablen-Tabelle mit dem zweiten Teil der Seriennummer, die auf dem Etikett des Messaufnehmers geschrieben ist, übereinstimmt (z. B. 7ME410 125803N386).

8 (v	ar - STEP1				
Table	Edit Insert P	LC Variable View Options Window Help			
-44			00 60 40	6C 5 Z	9
30	STEP1 Getti	ngStarted/SIMATIC 300(1)/CPU 315-2 DP/S7 Pro	g_Actual ONLI	NE	
1	Address	Symbol	Display form	Status value	Modify value
1	M 3.2	"RD_ALL"	BOOL	faise .	true
2]			
3	DB17.088 776	"DB_FLOW_PARA".p_Sensorinto.p_Sens_ser_no[1]	CHARACTER	4.	
4	0017.000 777	"DB_FLOW_PARA".s_Sensorinto.s_Sens_ser_no[2]	CHARACTER	2	
5	0017.000 770	"DB_FLOW_PARA".s_Sensorinto.s_Sens_ser_no[3]	CHARACTER	5	
6	0817.068 775	"DB_FLOW_PARA".s_Sensorinto.s_Sens_ser_no[4]	CHARACTER	Ŧ	
7	0817.068 780	"DB_FLOW_PARA".s_Sensorinto.s_Sens_ser_no[5]	CHARACTER	Ŷ	
8	0617.068 781	"DB_FLOW_PARA".s_Sensorinto.s_Sens_ser_no(6)	CHARACTER	3	
9	0617.066 782	"DB_FLOW_PARA".s_Sensorinto.s_Sens_ser_no(7)	CHARACTER	N	
10	0617.068 783	"DB_FLOW_PARA" s_Sensorinto.s_Sens_ser_no(8)	CHARACTER	3	
11	0817.068 784	"DB_FLOW_PARA".s_Sensorinto.s_Sens_ser_no(9)	CHARACTER	Ŧ	
12	0017.000 705	"DB_FLOW_PARA".s_Sensorinto.s_Sens_ser_no[10]	CHARACTER	*	
47					

Bild 9-4 Schritt 1

9.2.2 Schritt 2: Einstellen Grundparameter

In allen Anwendungen sind folgende Grundparameter zu definieren:

- Messbereich der Applikation (min max)
- Maßeinheit.

Hinweis

Einheiten und Messbereiche im Getting Started Beispiel

Die Maßeinheit ist kg/h (die Werte finden Sie in Anhang B (Seite 205)).

Der Endwert für MASSFLOW_MAX beträgt 250 kg/h. FC300 DN4 ist auf 150 kg/h voreingestellt.

Der Anfangswert für MASSFLOW_MIN beträgt 0 kg/h. FC300 DN4 ist auf 0 kg/h voreingestellt.

Einstellungen verändern

- Kopieren Sie den Index von Ordner "S7 Prog_Step2->Blocks" in den Ordner "S7 Prog_Actual->Blocks" (überschreiben Sie die vorhandenen Bausteine) und laden Sie ihn in die Steuerung.
- 2. Bereiten Sie ein Programm vor wie im Folgenden dargestellt.

Schritt 2: Grundeinstellungen in SIFLOW schreiben (CMD_IN = 699)

Mit diesem Netzwerk wird das Senden der Einstellungen an SIFLOW vorbereitet. Die Einheiten sowie die End- und Anfangswerte für MASSFLOW werden geändert. Die Einheiten befinden sich in DR 2 und die End-/Anfangswerte in DR 3. Daher wird der Befehl i_CMD_INPUT=699 verwendet, der alle Datensätze von DR 2 in DR 12 schreibt.

Alternativ können die Datensätze auch separat geschrieben werden:

DR 2 => i_CMD_INPUT=402

DR 3 => i_CMD_INPUT=403

Hierzu muss jedoch eine Programmiersequenz erstellt werden.

Der Benutzer muss die Parameter "MASSFLOW_UNIT" , "MASSFLOW_MAX" und "MASSFLOW_MIN" konfigurieren.

Wenn Bit "WR_BASIC" gesetzt ist, leitet SIFL_FC das Schreiben aller Daten aus "DB_FLOW_PARA" in die Baugruppe SIFLOW FC070 ein.

		DB17.DEX49.0			
		Command in			
E3.4	DB17_DBX50_0	progress			
Write basic	Execute command	"DB_FLOW_PARA			
setting to	"DB_FLOW_PARA_	SIFL1".			
SIFLOW	SIFL1".	bo_CMD_IN_			
"WR_BASIC"	bo_CMD_ENABLE	PROGRESS		M0VE	
	//	//	1	EN	ENO

- Öffnen Sie die Variablentabelle "STEP2" und legen Sie die Parameter "MASSFLOW_UNIT", "MASSFLOW_MAX" und "MASSFLOW_MIN" fest und ändern Sie die Variablen (d. h. aktualisieren Sie DB17 mit diesen Werten).
- Setzen Sie Bit "WR_BASIC" auf wahr, sodass alle Parameter aus DB17 (DB_FLOW_PARA) in die SIFLOW-Baugruppe geschrieben werden. Nun werden DB_FLOW_PARA.s_Units.b_Massflow_unit, DB_FLOW_PARA.s_BasicSettings.r_Massflow_max und

DB_	_FLOW_	_PARA.s_	_BasicSettings.r_	_Massflow_	_min in der	Variablentabelle	aktualisiert.
-----	--------	----------	-------------------	------------	-------------	------------------	---------------

Edit Inser	t PLC Variable View Options Window Help 플로마이지 또 말 알 맛?	- <u>47</u> 661 47 A	Ka-	
idress	5 x BR > X 2 2 19 90	1 447 66° 147 A	Kan	
idress			_	
	Symbol	Display format	Status value	Modify value
3.4	"WR_BASIC"	BOOL	false	true
60	"MASSFLOW_UNIT"	DEC	0	
61	"MASSFLOW_MAX"	FLOATING_POINT	250.0	250.0
65	"MASSFLOW_MIN"	FLOATING_POINT	0.0	
17.DEB 80	"DB_FLOW_PARA_SIFL1".s_Units.b_Massflow_unit	DEC	0	
17.DBD 108	"DB_FLOW_PARA_SIFL1".s_BasicSettings.r_Massflow_max	FLOATING_POINT	250.0	
17.DED 136	"DB_FLOW_PARA_SIFL1".s_BasicSettings.r_Massflow_min	FLOATING_POINT	0.0	
	60 61 65 17.066 80 17.060 108 17.060 136	60 *MASSFLOW_LNIT* 61 *MASSFLOW_MAX* 65 *MASSFLOW_MAX* 17.068 60 708_FLOW_PARA_SFL1*s_Units b_Massflow_unit 17.060 108_FLOW_PARA_SFL1*s_BasicSettings r_Massflow_max 17.060 108_FLOW_PARA_SFL1*s_BasicSettings r_Massflow_min	80 *MASSFLOW_LINT* DEC 61 *MASSFLOW_MAX* FLOATING_POINT 65 *MASSFLOW_MIN* FLOATING_POINT 7D68 80 *DB_FLOW_PARA_SIFL1*.s_Units b_Massflow_unit DEC 17 D60 108 *DB_FLOW_PARA_SIFL1*.s_BasicSettings.r_Massflow_max FLOATING_POINT 17 D60 *DB_FLOW_PARA_SIFL1*.s_BasicSettings.r_Massflow_max FLOATING_POINT	60 *MASSFLOW_LINT* DEC 0 61 *MASSFLOW_MAX* FLOATING_POINT 250.0 65 *MASSFLOW_MAX* FLOATING_POINT 0.0 17.068 60 *D6_FLOW_PARA_SIFL1*.s_Units.b_Massflow_unit DEC 0 17.069 108 *D8_FLOW_PARA_SIFL1*.s_BasicSettings.r_Massflow_max FLOATING_POINT 250.0 17.060 136 *D8_FLOW_PARA_SIFL1*.s_BasicSettings.r_Massflow_max FLOATING_POINT 250.0 17.060 136 *D8_FLOW_PARA_SIFL1*.s_BasicSettings.r_Massflow_min FLOATING_POINT 0.0

Bild 9-6 Schritt 2

ACHTUNG

Bei einem Systemfehler (SF-LED an der SIFLOW-Baugruppe = rot) lesen Sie weiter im Kapitel "Diagnose und Fehlerbehebung" (Seite 179).

Stellen Sie sicher, dass keine Störung oder unbeantworteten Fehler vorliegen, bevor Sie mit den nächsten Schritten fortfahren.

9.2.3 Schritt 3: Systemoptimierung

Das System des Durchflussmessgeräts wird durch eine Nullpunkteinstellung optimiert.

Nullpunkteinstellung durchführen

- 1. Installieren Sie Absperrvorrichtungen in der Rohrleitung. Die Vorrichtungen sollten nach Möglichkeit in Strömungsrichtung sowohl vor als auch hinter dem Messaufnehmer liegen. Andernfalls:
 - bei Horizontaleinbau auslassseitig
 - bei Vertikaleinbau einlassseitig
- 2. Pumpen Sie (mind. 2 Minuten lang) Flüssigkeit mit maximaler Durchflussrate durch den Messaufnehmer, um die Bildung von Luftblasen in der Flüssigkeit zu vermeiden.
- Stoppen Sie während des Pumpvorgangs den Durchfluss, indem Sie erst das Auslassventil und dann das Einlassventil schließen. Warten Sie 1 Minute. Auf diese Weise tritt Nulldurchfluss ein, die Flüssigkeit im Messaufnehmer steht jedoch weiterhin unter Druck, wodurch das Ausgasen der Flüssigkeit (d. h. das Entweichen von Luft oder anderen Gasen) verhindert wird.

Hinweis

Der Durchfluss muss vollständig gestoppt und der Messaufnehmer vollständig mit Flüssigkeit gefüllt sein.

- 4. Kopieren Sie den Index von Ordner"S7 Prog_Step3->Blocks" in den Ordner "S7 Prog_Actual->Blocks" und laden ihn in die Steuerung.
- 5. Bereiten Sie ein Programm vor wie im Folgenden dargestellt.

Schritt 3.1: Nullpunkteinstellung durchführen (CMD_IN = 18)

Wenn "CMD_ZERO_POINT" festgelegt ist, beginnt die Nullpunkteinstellung. Die Nullpunkteinstellung dauert 30 Sekunden, sofern diese Einstellung nicht geändert wurde. Für die Dauer der Nullpunkteinstellung ist Bit 9 in d_SC_STATUS von SIFL_FC auf TRUE gesetzt (d_SC_STATUS zählt die Bits 0 ... 31).

- Bild 9-7 Schritt 3.1: Durchführen einer Nullpunkteinstellung (CMD_IN = 18)
- 1. Öffnen Sie die Variablentabelle "STEP3". Um die Nullpunkteinstellung zu starten, setzen Sie Bit "CMD_ZERO_POINT" auf wahr.
- 2. Zeigen Sie in der Variablentabelle das Bit "ZERO_ADJUST_IN_PROGRESS" an und warten Sie, bis es den Wert 'niedrig' (0) annimmt.

Dieses Bit geht beim Start der Nullpunkteinstellung auf 'hoch' und beim Beenden der Nullpunkteinstellung wieder auf 'niedrig'.

- Setzen Sie das Bit "RD_ALL" auf wahr, sodass alle Parameter aus der SIFLOW-Baugruppe nach DB17 (DB_FLOW_PARA) eingelesen werden.
- Überprüfen Sie den Zero Sigma-Wert (DB_FLOW_PARA.s_ServiceInformation.r_Zero_sigma) und den Nullpunktverschiebungswert (DB_FLOW_PARA.s_ServiceInformation.r_Zero_offset_value). Diese Werte dürfen ihre jeweiligen Grenzwerte nicht überschreiten (DB_FLOW_PARA.s_BasicSettings.r_Zero_sigma_limit bzw. DB_FLOW_PARA.s_BasicSettings.r_Zero_offset_limit).

20	far - STEP3				
Table	Edit Insert PL	C Variable View Options Window Help			
14	Disigi a	8 X 83 83 10 1 X 12 2 10 10 10 10 10 10	80 491 Au		
100	STEP3 #Gettin	gStarted_V102\SIMATIC 300(1)\CPU 315-2 DP\S7 Program(1)	ONLINE		
	Address	Symbol	Display format	Status value	Modify value
1	M 3.7	"CMD_ZERO_POINT"	BOOL	false	true
2					
3	0817.060 42	"DB_FLOW_PARA_SIFL1".d_SC_STATUS	BIN	2#0000_0100_0000_0000_0000_0010_0000_000	
4	#ST_ZERO_ADA	UST_N_PROGRESS			
5	D017.D0X 44.1		BN	2/1	
6					
7					
8	M 3.2	"RD_ALL"	BOOL	false	
9					
10	D017.000 168	"DB_FLOW_PARA_SIFL1".s_BasicSettings / _Zero_signa_init	FLOATING_POINT	100.0	
11	D017.000 172	"DB_FLOW_PARA_SFL1".s_BasicSettings.r_Zero_offset_linit	FLOATING_POINT	100.0	
12	DB17.DBD 568	"DB_FLOW_PARA_SIFL1".s_ServiceInformation.r_Zero_signa	FLOATING_POINT	0.0	
13	DB17.0BD 560	"DB_FLOW_PARA_SIFL1".s_ServiceInformation.r_Zero_ottset_value	FLOATING_POINT	-70.0	
14					
15					
16					

Bild 9-8 Schritt 3

ACHTUNG

Bei einem Systemfehler (SF-LED an der SIFLOW-Baugruppe = rot) lesen Sie weiter im Kapitel "Diagnose und Fehlerbehebung" (Seite 179).

Stellen Sie sicher, dass keine Störung oder unbeantworteten Fehler vorliegen, bevor Sie mit den nächsten Schritten fortfahren.

Siehe auch

Eine ausführliche Beschreibung möglicher Fehler bei der Nullpunkteinstellung finden Sie im Kapitel "Diagnose und Fehlerbehebung" (Seite 179).

9.2.4 Schritt 4: System betriebsbereit

Das System ist nun betriebsbereit. Prozesswerte können abgerufen werden durch:

- 1. Zyklisches Lesen der Prozesswerte aus VAR_1_VAL oder VAR_2_VAL (freigestellt).
- Lesen aller Prozesswerte mittels CMD_IN. Damit wird DR30 gelesen, in dem alle verfügbaren Prozesswerte enthalten sind.

Methode 1 - zyklisches Lesen der Prozesswerte

VAR_1_VAL und VAR_2_VAL zeigen in der Standardkonfiguration MASSFLOW und VOLUMEFLOW an. Bei jedem Aufruf von FB95 (SIFL_FC) werden diese Werte aktualisiert und damit ein zyklisches Lesen der beiden wichtigsten Parameter für eine bestimmte Anwendung durchgeführt.

Um die in VAR1_VAL und VAR2_VAL angezeigten Prozesswerte zu ändern, müssen neue Prozesswertadressen in den Parametern VAR1_ADR und VAR2_ADR verwendet werden.

Parameter	Kommentar	Adresse
Systemstatus	32 Bit Systemstatus. Identisch mit SC_STATUS an SIFL_FC	4000
Massedurchfluss	Einheit gemäß DR2	3000
Volumendurchfluss	Einheit gemäß DR2	3002
Dichte	Einheit gemäß DR2	3004
Messaufnehmertemperatur	Einheit gemäß DR2	3006
Fraktion A Durchfluss	Einheit gemäß DR2	3008
Fraktion B Durchfluss	Einheit gemäß DR2	3010
Prozent Fraktion A	Einheit gemäß DR2	3012
Summenzähler 1	Einheit gemäß DR2	3022
Summenzähler 2 Batch	Einheit gemäß DR2	3024

1. Kopieren Sie den Index von Ordner "S7 Prog_Step4_Approach1->Blocks" in den Ordner "S7 Prog_Actual->Blocks" und laden ihn in die Steuerung.

2. Bereiten Sie ein Programm vor wie im Folgenden dargestellt.

Schritt 4 - Methode 1: Neue Adresse für VAR1_VAL und VAR2_VAL (CMD_IN = 703 und 704)

Dieses Netzwerk setzt einen neuen Prozesswert (zwei Werte), die bei jedem Zyklus aktualisiert werden.

Die neuen Adressen der benutzerdefinierten Prozesswerte lauten "NEW_VAR1_ADDR" und "NEW_VAR2_ADDR". Wenn das Bit "SET_VAR_ADR" gesetzt ist, werden zum Ändern der beiden Werte zwei Schreibbefehle benötigt, da ihnen unterschiedliche i_CMD_INPUT -Werte zugeordnet sind.

Beispiel: Wenn mit den geänderten Prozesswerten die Dichte und die Messaufnehmertemperatur angezeigt werden sollen, muss der Benutzer "NEW_VAR1_ADDR" = 3004 und "NEW_VAR2_ADDR" = 3006 setzen.

Bild 9-9 Schritt 4: Methode 1 - zyklisches Lesen der Prozesswerte

 Öffnen Sie die Variablentabelle "STEP4_appr1", wählen Sie Prozesswerte aus der Tabelle aus und schreiben Sie die entsprechenden Werte an NEW_VAR1_ADDR und NEW_VAR2_ADDR in der Variablentabelle (z. B. um VAR1_VAL auf Dichte und VAR2_VAL auf Temperatur einzustellen und NEW_VAR1_ADDR = 3004 und NEW_VAR2_ADDR = 3006) zu setzen.

	/ar	- STEP4_appr1				
lde	8	Edit Insert PL	C Variable View Options Window H	elp		
ģ	1	ටළුළු අ	3 X BD BD 0 X 9 3	1 N? 90 Gr	47 66 47	llex.
3	51	EP4_appr1 @	GettingStarted_V102\S7 Getting Sta	rted Steps ONLIN	•	
Ĩ	ć	Address	Symbol	Display format	Status value	Modify value
		M 3.6	"SET_VAR_ADR"	BOOL	false	true
1						
		M/V 26	"NEW_VAR1_ADDR"	DEC	3004	3004
		MVV 28	"NEW_VAR2_ADDR"	DEC	3006	3006
		DB17.DBW 16	"DB_FLOW_PARA".I_VAR1_ADR	DEC	3004	
5		DB17.DBW 18	"DB_FLOW_PARA".I_VAR2_ADR	DEC	3006	
1						
		DB17.DBW 38	"DB_FLOW_PARA".i_LAST_VAR1_ADR	DEC	3004	
		DB17.DBW 40	"DB_FLOW_PARA".i_LAST_VAR2_ADR	DEC	3006	
0		DB17.DBD 22	"DB_FLOW_PARA".d_VAR1_VALUE	FLOATING_POINT	15.13854	
1		DB17.DBD 26	"DB_FLOW_PARA".d_VAR2_VALUE	FLOATING_POINT	23.81979	
2		DB17.DBX 49.3	"DB_FLOW_PARA".bo_VAR1_OK	BOOL	true	
3		DB17.DBX 49.4	"DB_FLOW_PARA".bo_VAR2_OK	BOOL	true	
4				1		
15						

2. Um VAR1_VAL und VAR2_VAL zu ändern, setzen Sie Bit "SET_VAR_ADR" auf aktiv.

Bild 9-10 Schritt 4 - Methode 1

Methode 2 - Lesen aller Prozesswerte mit DR30

Wenn mehr als zwei Prozesswerte benötigt werden, können alle Prozesswerte mittels CMD_IN gelesen werden. Damit wird DR30 gelesen, der alle verfügbaren Prozesswerte enthält.

- 1. Kopieren Sie den Index von Ordner "S7 Prog_Step4_Approach2->Blocks" in den Ordner "S7 Prog_Actual->Blocks" und laden ihn in die Steuerung.
- 2. Bereiten Sie ein Programm vor wie im Folgenden dargestellt.

Schritt 4 - Methode 2: Alle Prozesswerte in DR 30 lesen (CMD_IN = 230)

Bereiten Sie das Lesen aller Prozesswerte aus SIFLOW vor. Dieses Netzwerk gibt den i_CMD_INPUT = 230 aus, wodurch alle Prozesswerte aus SIFLOW ausgelesen und in DB17 "DB_FLOW_PARA" abgelegt werden.

Bild 9-11 Methode 1 - zyklisches Lesen der Prozesswerte 2

1. Öffnen Sie die Variablentabelle "STEP4_appr2" und setzen Sie Bit "RD_DR30" auf aktiv, um Datensatz 30 von der SIFLOW-Baugruppe in DB17 (DB_FLOW_PARA) einzulesen.

		rt PLC Variable View Options Window Help			j
Dø	R		60° 40° 60° 40° 11.00]	
Address		Symbol	Display format	Status value	Modify value
M 3.0		"RD_DR30"	BOOL	false	true
DB17.DB0	484	"DB_FLOW_PARA".s_ProcessValues.r_Massflow	FLOATING_POINT	0.0009509333	
DB17.DB0	488	"DB_FLOW_PARA".s_ProcessValues.r_Volumeflow	FLOATING_POINT	1.745053e-008	
DB17.DB0	492	"DB_FLOW_PARA".s_ProcessValues.r_Density	FLOATING_POINT	15.13697	
DB17.DB0	496	"DB_FLOW_PARA".s_ProcessValues r_Sensor_temperature	FLOATING_POINT	23.85925	
DB17.DB0	512	"DB_FLOW_PARA".s_ProcessValues_r_Totalizer_1	FLOATING_POINT	518003.8	
DB17.DB0	516	"DB_FLOW_PARA".s_ProcessValues.r_Totalizer_2_batch	FLOATING_POINT	517955.0	
	Address M 3.0 DB17.DB0 DB17.DB0 DB17.DB0 DB17.DB0 DB17.DB0 DB17.DB0 DB17.DB0	Address M 3.0 DB17.DBD 484 DB17.DBD 488 DB17.DBD 492 DB17.DBD 496 DB17.DBD 512 DB17.DBD 516	Address Symbol Address Symbol M 3.0 "RD_DR30" DB17.DBD 484 "DB_FLOW_PARA".s_ProcessValues r_Massflow DB17.DBD 488 "DB_FLOW_PARA".s_ProcessValues r_Volumeflow DB17.DBD 492 "DB_FLOW_PARA".s_ProcessValues r_Densty DB17.DBD 496 "DB_FLOW_PARA".s_ProcessValues r_Densty DB17.DBD 512 "DB_FLOW_PARA".s_ProcessValues r_Totalizer_1 DB17.DBD 516 "DB_FLOW_PARA".s_ProcessValues r_Totalizer_2_batch DB17.DBD 516 "DB_FLOW_PARA".s_ProcessValues r_Totalizer_3_batch DB17.DB17.DB17.DB17.DB17.DB17.DB17.DB17.	Address Symbol Display format M 3.0 "RD_DR30" BOOL DB17.DBD 484 'DB_FLOW_PARA".s_ProcessValues r_Massflow FLOATING_POINT DB17.DBD 484 'DB_FLOW_PARA".s_ProcessValues r_Volumeflow FLOATING_POINT DB17.DBD 488 'DB_FLOW_PARA".s_ProcessValues r_Volumeflow FLOATING_POINT DB17.DBD 488 'DB_FLOW_PARA".s_ProcessValues r_Onstry FLOATING_POINT DB17.DBD 496 'DB_FLOW_PARA".s_ProcessValues r_Denstry FLOATING_POINT DB17.DBD 10B_FLOW_PARA".s_ProcessValues r_Totalizer_1 FLOATING_POINT DB17.DBD 516 'DB_FLOW_PARA".s_ProcessValues r_Totalizer_2_batch FLOATING_POINT	Address Symbol Display format Status value M 3.0 "RD_DR30" BOOL false DB17.DB0 464 "DB_FLOW_PARA".s_ProcessValues.r_Massflow FLOATING_POINT 0.0009509333 DB17.DB0 484 "DB_FLOW_PARA".s_ProcessValues.r_Massflow FLOATING_POINT 1.745053e-008 DB17.DB0 488 "DB_FLOW_PARA".s_ProcessValues.r_Densty FLOATING_POINT 15.13697 DB17.DB0 496 "DB_FLOW_PARA".s_ProcessValues.r_Sensor_temperature FLOATING_POINT 23.85925 DB17.DB0 496 "DB_FLOW_PARA".s_ProcessValues.r_Sensor_temperature FLOATING_POINT 23.85925 DB17.DB0 512 "DB_FLOW_PARA".s_ProcessValues.r_Totalizer_1 FLOATING_POINT 518003.8 DB17.DB0 516 "DB_FLOW_PARA".s_ProcessValues.r_Totalizer_2_batch FLOATING_POINT 517955.0

Bild 9-12 Schritt 4 - Methode 2

Inbetriebnahme mit SIMATIC S7

9.2 Schrittanleitung für die Inbetriebnahme mit S7

Eichpflichtiger Verkehr

Dieses Kapitel beschreibt, wie Sie eine Anwendung für den eichpflichtigen Verkehr (CT, Custody Transfer) mit SIFLOW FC070 Ex CT einrichten.

Um eine Anwendung für den eichpflichtigen Verkehr einzurichten, gibt es zwei Möglichkeiten: entweder über Digitalausgang mit Phasenverschiebung oder mithilfe der Active X-Komponente OCX von SIFLOW CT in einem SIMATIC HMI-Bediengerät.

Hinweis

Eichpflichtiger Verkehr wird nur von der Ausführung SIFLOW FC070 Ex CT unterstützt

Vor diesem Kapitel sollten Sie folgende Kapitel gelesen haben:

- Hardware einbauen und ausbauen
- Anschließen
- Softwareinstallation
- Programmieren in SIMATIC S7

10.1 Tatsächliche SIFLOW-Ausführung ermitteln

Vor der Parametrierung müssen alle Parameter von der SIFLOW-Baugruppe eingelesen werden, um die tatsächliche Ausführung des Gerätes zu ermitteln.

10.2 Schrittanleitung für die Konfiguration von SIFLOW CT-Funktionen

Konfiguration von CT-Funktionen über den Digitalausgang mit Simatic PDM

Schritt 1: Stellen Sie den Schreibschutzschalter auf "OFF".

Schritt 2: Lesen Sie die Parameter von der SIFLOW FC070 ein.

Schritt 3: Wählen Sie den Digitalausgang – "Redundancy pulse/frequency 90°" oder "Redundancy pulse/frequency 180°".

Parameter	Value	Unit	Status
» » » Digital Output			
Digital Output	Redundancy Pulse 180°	•	
Measurement Function	Mass Flow		
Unit	kg		
Mass/Pulse	0,039999999	kg	
Pulse Output Direction	Unidirectional		
Pulse Width	8.2 ms	1000000000	
Pulse Polarity	Normally closed if no Pulse		
SF Reaction	No Reaction		

Schritt 4: Ändern Sie die OCX-Werte in "No Process Value Select".

10.3 Konfiguration der CT-Ausführung

» » » OCX		
SW Version Type	V	
Process Value 1 ID	No Process Value Select	
Process Value 2 ID	No Process Value Select	
OCX Main Number	1	
OCX Sub Number	0	

Schritt 5: Laden Sie die Einstellungen in das Gerät.

Schritt 6: Stellen Sie den Schreibschutzschalter auf "ON".

Hinweis

Siehe zur Konfiguration mit S7 auch die Hinweise zum DR5-Digitalausgang und DR39 CT-Parametern.

10.3 Konfiguration der CT-Ausführung

Verwendung des SIFLOW CT OCX für SIMATIC HMI

Die Verwendung der OCX-Komponente von SIFLOW bedeutend auch eine verschlüsselte Kommunikation über den Rückwand-Bus zwischen der SIFLOW FC070 und dem HMI-Bediengerät (OCX).

10.4 Schreibzugriff aktivieren

Um in die Baugruppe SIFLOW FC070 Ex CT schreiben zu können, muss der Schreibschutzschalter (Seite 35) auf "OFF" gestellt werden.

10.5 Hardware- und Softwarevoraussetzungen

10.5 Hardware- und Softwarevoraussetzungen

Hardware- und Softwarevoraussetzungen

Bild 10-1 Hardware- und Softwarevoraussetzungen

Die obige Abbildung zeigt die Hardware- und Softwarevoraussetzungen für die Erstellung von SIMATIC HMI-Anwendungen mit der OCX-Komponente von SIFLOW CT. Diese wird zum Anzeigen kalibrierter Werte von der SIFLOW FC070 CT-Baugruppe verwendet.

Die grundlegenden Hardware- und Softwarevoraussetzungen werden durch WinCC flexible 2008 SP2 und SIMATIC S7 V5.4.x festgelegt. Informieren Sie sich in der entsprechenden Dokumentation über die Hardware- und Softwarevoraussetzungen für WinCC flexible 2008 SP2 und SIMATIC S7 V5.4.x.

SIFLOW CT OCX kann mit WinCC flexible 2008 SP2 und neueren Versionen verwendet werden. Ältere Versionen von WinCC flexible werden nicht unterstützt.

10.6 Installation des SIFLOW CT OCX

10.6 Installation des SIFLOW CT OCX

Vergewissern Sie sich vor der Installation des SIFLOW CT OCX-Pakets, dass WinCC flexible 2008 SP2 auf der Engineering Station installiert ist. Wenn WinCC flexible 2008 SP2 nicht auf der Engineering Station installiert ist, schlägt die Installation fehl.

Schließen Sie vor dem Start des Installationsprogramms alle Anwendungen (wie Microsoft Word usw.), da Windows nach der Installation von SIFLOW CT OCX neu gestartet werden muss, um das OCX vollständig in die WinCC-Umgebung einzubinden.

Das SIFLOW CT OCX-Installationspaket besteht aus zwei Dateien:

Die Rahmenanwendung für die Installation
Die Installationsdatei (z. B. SCOV01.00.00_01.02.msi) für Windows

Starten Sie das Installationsprogramm durch Doppelklicken auf die Datei setup.exe und führen Sie die Installationsschritte aus.

Wenn das Installationsprogramm eine ältere Version von SIFLOW CT OCX feststellt, wird vor dem Installieren der neuen Version erst die ältere Version deinstalliert.

Eine ältere Version von SIFLOW CT OCX kann nicht über eine neuere Version installiert werden. Um die ältere Version trotzdem zu installieren, müssen Sie vor dem Installieren der älteren Version die neuere Version deinstallieren.

Nach Abschluss der Installation von SIFLOW CT OCX muss das Zielsystem neu gestartet werden, da ansonsten das OCX in WinCC flexible nicht sichtbar ist.

Hinweis

SIFLOW CT OCX registriert sich selbst in den Systemdateien des Betriebssystems MS Windows. Sie können weder SIFLOW CT OCX-Dateien oder -Ordner mit Microsoft Windows-Dienstprogrammen wie Windows Explorer löschen, verschieben oder umbenennen noch können Sie SIFLOW CT OCX-Daten in der Microsoft Windows-Registry ändern. Nach solchen Änderungen funktioniert das Control möglicherweise nicht mehr ordnungsgemäß.

10.7 Entfernen des SIFLOW CT OCX

Um Ihr Softwarepaket (z. B. "SIFLOW CT OCX V1.0 for WinCC flexible 2008 SP2") zu entfernen, verwenden Sie die Microsoft Windows-Anwendung "Programme hinzufügen/entfernen" (unter MS Windows XP z. B. in der Taskleiste unter …> Einstellungen > Systemsteuerung > Programme hinzufügen/entfernen).

Alternativ können Sie zum Deinstallieren eines Programms auch das Installationsprogramm (Setup-Programm) von SIFLOW CT OCX verwenden.

10.8 Kompatibilitätsvorausssetzungen

10.8 Kompatibilitätsvorausssetzungen

Für ein einwandfreies Funktionieren der bereitgestellten SIFLOW CT OCX-Version müssen folgende Kompatibilitätsvoraussetzungen erfüllt sein:

SIFLOW CT OCX Version V1.0 erfordert

SIFLOW FC070 CT FW Version:	V2.0.0 oder neuer
SIMATIC FB95 oder 695:	V2.0

10.9 Unterstützte Geräte

Das SIFLOW CT OCX wird für mehrere Geräte/Plattformen bereitgestellt, wie die OP/TP/MP Panels, das WinCC flexible PC-Runtime und für die Einbindung in das WinCC flexible 2008 Engineering System (ES). Für jedes Gerät muss ein spezielles OCX bereitgestellt werden, um die unterschiedlichen Geräteplattformen zu unterstützen.

In Version V1.0 oder neuer werden nur Bediengeräte auf PC-Basis und Bediengeräte mit Windows CE 5.0-Plattformen vom OCX unterstützt.

Die unten stehenden Tabelle enthält Details zu den von der aktuellen OCX-Version unterstützten Geräten und Plattformen.

Tabelle 10-1	Vom SIFLOW	ActiveX-Control	unterstützte	Geräte

Gerät	OC-Plattform	WinCC flexible Version 2008 SP2	Von OPP V4.4 unterstützt	Unterstützt von SIFLOW CT OCX
PC/WinCC flexible ES	Windows XP/Vista /7	ја	ја	V1.0 oder neuer
TP 170B Color	Windows CE 3.0	ја	nein	nein
TP 170B Mono	Windows CE 3.0	ја	nein	nein
TP 170A	-	nein	nein	nein
OP 170B Mono	Windows CE 3.0	ја	nein	nein
TP 177A 6"	-	nein	nein	nein
TP177A 6" (Hochformat)	-	nein	nein	nein
TP 177B Mono DP	Windows CE 3.0	ја	ja	nein
TP 177B Color PN/DP	Windows CE 3.0	ја	ја	nein
TP 177B 4" Color PN/DP	Windows CE 5.0	ја	ja	V1.0 oder neuer
OP 177B Mono DP	Windows CE 3.0	ја	ја	nein
OP 177B Color PN/DP	Windows CE 3.0	ја	ja	nein
TP 270 6"	Windows CE 3.0	ја	nein	nein
TP 270 10"	Windows CE 3.0	ја	nein	nein
TP 277 6"	Windows CE 3.0	ја	ja	nein
OP 270 6"	Windows CE 3.0	ја	nein	nein
OP 270 10"	Windows CE 3.0	ја	nein	nein
OP 277 6"	Windows CE 3.0	ја	ја	nein

Eichpflichtiger Verkehr

10.10 Layout des SIFLOW CT OCX

Gerät	OC-Plattform	WinCC flexible Version 2008 SP2	Von OPP V4.4 unterstützt	Unterstützt von SIFLOW CT OCX
MP 370 12" Key	Windows CE 3.0	ја	nein	nein
MP 370 12" Touch	Windows CE 3.0	ја	nein	nein
MP 370 15" Touch	Windows CE 3.0	ја	nein	nein
MP 270 6" Touch	Windows CE 3.0	ja	nein	nein
MP 270 10" Touch	Windows CE 3.0	ја	nein	nein
MP 270 10" Key	Windows CE 3.0	ја	nein	nein
MP 277 8" Touch	Windows CE 5.0	ja	ja	V1.0 oder neuer
MP 277 10" Key	Windows CE 5.0	ja	ja	V1.0 oder neuer
MP 277 10" Touch	Windows CE 5.0	ја	ја	V1.0 oder neuer
MP 377 12" Key	Windows CE 5.0	ja	ja	V1.0 oder neuer
MP 377 12" Touch	Windows CE 5.0	ja	ja	V1.0 oder neuer
MP 377 15" Touch	Windows CE 5.0	ја	ja	V1.0 oder neuer
MP 377 19" Touch	Windows CE 5.0	ja	ja	V1.0 oder neuer

10.10 Layout des SIFLOW CT OCX

Bild 10-2 Layout des SIFLOW CT Secure OCX

Die obige Abbildung zeigt das derzeit bereitgestellte Layout des OCX.

Das OCX umfasst die folgenden Anzeigeelemente:

10.11 Fehlercodes

Element	Beschreibung
Geräte-ID	Die in diesem Bereich angezeigte Geräte-ID ist die Seriennummer der Baugruppe SIFLOW FC070 Ex CT, wie sie durch Datensatz 37 bereitgestellt wird
Statusanzeige	Derzeit nicht verwendet. Für künftige Verwendung reserviert
OCX-ID	Version des SIFLOW CT OCX, das die aktuelle Anzeige verfügbar macht. Diese Version muss im Parameterbereich der Baugruppe SIFLOW FC070 Ex CT eingestellt werden. Andernfalls funktioniert der Datenaustausch nicht und es werden keine Werte angezeigt
Anzeige der kalibrierbaren Werte 1 und 2	In diesem Bereich werden der kalibrierbare Wert und seine Einheit entsprechend seiner Parametrierung (z. B. mit PDM) angezeigt. Wenn der Wert nicht parametriert ist, wird hier "" angezeigt. Der Wert erscheint als Gleitkommawert mit maximal zwei Stellen hinter dem Dezimalkomma (z. B. 1234,56 kg). Der Wert wird auf die zweite Nachkommastelle gerundet. Bei Auftreten eines Fehlers wird im Wertebereich der Text "ERROR <fehlercode> angezeigt (z. B. "ERROR 3"). Eine Liste der Fehler und Fehlercodes enthalten die nachstehenden Tabellen.</fehlercode>

Tabelle 10- 2	Elemente	des SIFL	OW CT	OCX-Layouts
---------------	----------	----------	-------	--------------------

Außerdem können die Textanzeigefarbe und der Control-Hintergrund im WinCC flexible Engineering System individuell eingestellt werden.

10.11 Fehlercodes

Bei einem Fehler wird im Wertebereich des SIFLOW CT OCX der Text "ERROR <Fehlercode>" angezeigt.

Die folgende Tabelle enthält eine Beschreibung der Fehlercodes:

Fehlercode	Beschreibung
1	Daten-Timeout. Innerhalb des Zeitlimits (derzeit 3 Sekunden) keine gültigen Daten von der Baugruppe SIFLOW FC070 Ex CT empfangen
2	Authentifizierungs-Timeout. AUTH-Angabe in DR37.status hat sich nicht geändert
3	Fehler COM_ERR in DR37.status, signalisiert von der Baugruppe SIFLOW FC070 Ex CT
4	Fehler ST_SF in DR37.status, signalisiert von der Baugruppe SIFLOW FC070 Ex CT
5	Die CRC der empfangenen Daten ist nicht gültig. Entschlüsselung von Datensatz fehlgeschlagen oder Daten beschädigt
6	Ungültige ID empfangen
7	Fehler bei Umwandlung Gleitkommawert in String
8	Der anzuzeigende Wert passt nicht in den Anzeigebereich

Tabelle 10-3 Im SIFLOW CT OCX angezeigte Fehler

10.12 Unterstützte Sprachen

10.12 Unterstützte Sprachen

Das SIFLOW CT OCX einschließlich der Eigenschaften-Ansichten des OCX in WinCC flexible ES sowie das Setup-Programm des Pakets unterstützen nur Englisch.

10.13 Einschränkungen

Für die aktuelle Version des SIFLOW CT OCX gelten folgende Einschränkungen:

• Bediengeräte auf Basis der Windows CE 3.0-Plattform werden derzeit nicht unterstützt.

10.14 Projektierung und Betrieb des SIFLOW CT OCX

Um das SIFLOW CT OCX-Paket in WinCC flexible ES verwenden zu können, muss das Paket auf der Engineering Station installiert sein. Auf der Engineering Station muss die gerätespezifische HMI-Anwendung, einschließlich des SIFLOW CT OCX zum Anzeigen von kalibrierbaren Werten, für S7-300-Automatisierungssysteme mit integrierter Baugruppe SIFLOW FC070 Ex CT erstellt werden. Anschließend muss die HMI-Anwendung mit dem gerätespezifischen SIFLOW CT OCX über WinCC flexible ES in das Bediengerät geladen werden. Die kalibrierbaren Werte von der SIFLOW FC070 Ex CT können dann im Bediengerät angezeigt werden. Unter "Unterstützte Geräte" (Seite 103) finden Sie eine Auflistung der unterstützten Bediengeräte. Zur Abwicklung der Kommunikation mit der Baugruppe SIFLOW FC070 Ex CT werden die kalibrierbaren Werte dem OCX innerhalb der HMI-Anwendung durch den Datenaustausch mit derjenigen S7-Anwendung zur Verfügung gestellt, auf der die SIFLOW-FB/DBs ausgeführt werden. Siehe dazu "Beschreibung" (Seite 21).

10.14.1 Erstellen des HMI-Projekts

Nach der Installation des SIFLOW CT OCX auf der Engineering Station muss ein WinCC flexible-Projekt für das gewünschte HMI-Bediengerät eingerichtet werden. Dies kann über den Projekt-Assistenten in WinCC flexible erfolgen. Um die Definition der Verbindungen und Variablen zu vereinfachen, wird empfohlen, das WinCC flexible-Projekt in das zugehörige S7-Projekt einzubinden. Weitere Beschreibungen entnehmen Sie bitte der Dokumentation zu S7 und WinCC flexible.

Die folgende Abbildung zeigt ein WinCC flexible-Projekt für ein Bediengerät MP277 8" Touch und das Aussehen des SIFLOW CT OCX in einem HMI-Bild.

10.14 Projektierung und Betrieb des SIFLOW CT OCX

ced - CT_DEMO - SIMATIC HME-MP277T set Format Facesiates Octors Woods	. Heb			
-α·×X № № . 2 6 e	%.[1.]%.[8.9%]	1. 10 2 2. 10.0	G. (1001 -	10.0.0.=
2. 2 2	8708. *****. 4	AAAA. [四字四语计	AFHIER] . 8 5 Al Level - 0 B
(X DOT-ILST_UK				IDX Tools
SIEMENS			CILLATIC ART	1 + 2 8
STEIVIEIUS			SIMATIC MU	Emple Objecti
		/		Graphics
X.		Drag & Drop		SURLOW_CT_OW
		SIFLOW Control		HIRLOW_CT_CW
·		7		
wit		1		SIELOW Control
tes		M		
-			10. V1.0	
	40045	070 00	1	
192	12345	0679.00	KO	
ics Lists dministration				
	1001			
yes .	1234	5679 00	ka	
	I LUTC	010.00	ng	
		SIFLOW Control		· •
SIFLOW_CT_Ctrl	_1 (SIFLOW_CT_Ctrl)	*		(?)×
◆ Kerreral			Ger	neral
Events	Name SPLOW_CT_Ctrl_1	Datasets	and the second se	
		Read CO_FLOW_PARA_DNI0.s_	CT_XW +	
		www.pogrowjwww.pwid.wg		
		Foreground color		
		000	-	
		Background color		Ubrary
		198,198,198	-	
				Brop any object delete it

Bild 10-3 SIFLOW CT OCX in einem WinCC flexible-Projekt

Das SIFLOW CT OCX erscheint in dem WinCC-Fenster unter "Extras", das mit "SIFLOW_CT_Ctrl" beschriftet ist. Die Einbindung des Controls in ein HMI-Bild kann durch einfaches Ziehen und Ablegen auf dem gewünschten Bild erfolgen. Die Größe des Controls kann durch Ziehen der kleinen blauen Felder geändert werden, die am Rand des Controls angezeigt werden.

Wenn das SIFLOW CT OCX markiert wird, wird das Eigenschaften-Fenster mit den einstellbaren Eigenschaften des SIFLOW CT OCX angezeigt.

Folgendes kann eingestellt werden:

Eigenschaft	Beschreibung
Name	Name des Controls zur Identifikation innerhalb des HMI-Projekts von WinCC flexible
Datensätze - Lesen	Die Variable zur Darstellung der Daten von Datensatz 37 auf der zugehörigen SIMATIC-Steuerung. Im Betrieb stellt das WinCC flexible Runtime auf dem Ziel-Bediengerät die Daten für diese Variable für das SIFLOW CT OCX bereit. Bevor die Variable verknüpft werden kann, muss sie im WinCC flexible- Bereich "Kommunikation" eingerichtet werden. Siehe die ausführliche Beschreibung unter "Einrichten der Eingangsdaten-Variable für den OCX- Lesevorgang" (Seite 109)

Tabelle 10-4 Eigenschaften des SIFLOW CT OCX

Eichpflichtiger Verkehr

10.14 Projektierung und Betrieb des SIFLOW CT OCX

Eigenschaft	Beschreibung
Datensätze - Schreiben	Die Variable zur Darstellung der E/A-Daten von SIFLOW FC070 Ex CT auf der zugehörigen SIMATIC-Steuerung. Das WinCC flexible Runtime auf dem Ziel-Bediengerät erfasst die Daten von SIFLOW CT OCX und schreibt sie in den Ausgangsabschnitt (Byte 10-11) der zugehörigen SIMATIC- Steuerung, der durch diese Variable dargestellt wird. Bevor die Variable verknüpft werden kann, muss sie im WinCC flexible- Bereich "Kommunikation" eingerichtet werden. Siehe die ausführliche Beschreibung unter "Einrichten der Ausgangsdaten-Variable für den OCX- Schreibvorgang" (Seite 111)
Vordergrundfarbe	Die Textfarbe des SIFLOW CT OCX
Hintergrundfarbe	Die Hintergrundfarbe des SIFLOW CT OCX

10.14.2 Einrichten der Verbindung zur Steuerung

Bevor Variablen zur Darstellung von Daten auf einer zugehörigen Steuerung eingestellt werden können und das HMI-Projekt in ein bestimmtes Bediengerät geladen werden kann, muss die Verbindung zwischen dem Bediengerät und der Steuerung in WinCC flexible projektiert werden.

Fügen Sie wie in der Abbildung unten gezeigt eine neue Verbindung ein und geben Sie die Daten für die gewünschte Verbindung ein.
Eichpflichtiger Verkehr

10.14 Projektierung und Betrieb des SIFLOW CT OCX

	CT-TEST_UK	Connections						C		
IATIC HMI-MP277T(MP 277 10" Tou Screens → Add Screen	Name	Active	Communication driver	r Station	Partner	Node	Online	Comment	JUNEC	
Template CT-TEST_DE CT-TEST_UK Communication CTags Connections Connections Connections Connections Connections	Connection_1	On	SIMATIC 57 300/400	▼ \CT_DEMO\SI	▼ CPU 315-2 PN ▼	MPI/DP	▼ On			
Alarm Management Analog Alarms Giocrete Alarms Q. Settings Recipes Historical Data Scripts	Parameters Area	pointer							51-11	
Reports Fext and Graphics Lists Auntime User Administration Device Settings guage Settings Project Languages Graphics		Interfac	e I/OP I HMI device			Network				PLC dev
Project Texts Dictionaries tures ion Management	Type TTY R5232 R5422 R5485 Simatic	Baud rate 187500 Address Access poin Only mas	3 STONLINE ter on the bus		Profile MPI Highest station ad	Idress (HSA)			Address Expansion slot Rack 🖌 Cyclic operation	2 2 0
I										

Bild 10-4 Einrichten der Verbindung zwischen Bediengerät und Steuerung

10.14.3 Einrichten der Variablen zur Darstellung von Eingangsdaten für OCX-Lesevorgang

Die durch SIFLOW CT OCX angezeigten Daten werden auf der SIMATIC-Steuerung über den Abschnitt "s_CT_Values" des Datensatzes "DB_FLOW_PARA" bereitgestellt. Der Abschnitt "s_CT_Values" stellt Daten gemäß DR37 dar. Eine Kurzbeschreibung des entsprechenden Datensatzes enthält der Anhang "Datensätze" (Seite 211).

Im Bereich "Variablen" unter dem WinCC flexible-Menüeintrag "Kommunikation" können die im HMI-Projekt verwendeten Variablen definiert werden. Wenn das WinCC flexible-Projekt in ein zugehöriges S7-Projekt eingebunden ist, kann die Variable einfach dadurch eingerichtet werden, dass beim Einfügen einer neuen Variablen die entsprechende SPS-Variable aus der Klappliste ausgewählt wird. 10.14 Projektierung und Betrieb des SIFLOW CT OCX

Die folgende Abbildung zeigt die erforderlichen Einstellungen für die Variable zur Darstellung von Datensatz 37. Wichtig ist dabei, dass der "Datentyp" der Variablen wie unten abgebildet als "Byte" definiert und für "Array-Elemente" "32" festgelegt wird. Andernfalls funktioniert der Datenaustausch nicht.

C [®] WinCC flexible Advanced - CT_DEMO - S Project Edit View Insert Format Fa <= New - ► ■ ■	ceplates Options Window	<u>H</u> elp h ↓ . ħi . ₩	မာ မို (≺Undefi	ned> 💽 🗸 🛛 🔗 '	?: ? . .			<u>_</u> &×
Project	CT-TEST_UK	ections 🛛 🗧 Tags 🔍 📃	σ					000
	Name DB_FLOW_PARA_DNI0.	s_CT_Values.w_Crypto_CRC w_OCX_WRITE_DATA	Connection_1 Connection_1 Connection_1	Data type Byte Word	Length 32 2	Symbol <undefined> w_OCX_WRITE_DATA</undefined>	Address DB 17 DBB 990 DB 17 DBW 78	TAGS
Project Languages Graphics Graphics Dictionaries Subtraces Version Management	DB_FLOW_PARA_D General Properties Events	N10.w_OCX_WRI General N Display n Connec Data Acquisition c Array elem	TE_DATA (T TE_DATA (T ame OCX_WRITE_ ame OC	ag) DATA	Length 2			Ceneral

Bild 10-5 Einrichten der Variablen zur Darstellung von Datensatz 37

Der "Erfassungszyklus" sollte im Bereich unter 3 Sekunden liegen, da der Kommunikations-Timeout, der vom OCX und der Firmware auf der SIFLOW-Baugruppe gesteuert wird, auf maximal 3 Sekunden festgelegt ist und bei Überschreitung einen Fehler meldet, siehe "ERROR 1" (Seite 105).

10.14.4 Einrichten der Variablen zur Darstellung von Ausgangsdaten für OCX-Schreibvorgang

Das SIFLOW CT OCX kommuniziert mit der SIFLOW FC070 CT-Baugruppe, indem es in den Ausgangsdatenabschnitt w_OCX_WRITE_DATA des Datensatzes DB_FLOW_PARA in der Steuerung schreibt. Der in der Steuerung ausgeführte SIFLOW-FB überträgt diese Ausgangsdaten an die Baugruppe SIFLOW FC070 Ex CT, indem er die Daten an die Bytes 10 und 11 (OCX-Schreibdaten) des Bereichs s7_control_signals in der Peripherieschnittstelle schreibt.

Im Bereich "Variablen" unter dem WinCC flexible-Menüeintrag "Kommunikation" können die im HMI-Projekt verwendeten Variablen definiert werden. Wenn das WinCC flexible-Projekt in ein zugehöriges S7-Projekt eingebunden ist, kann die Variable einfach dadurch eingerichtet werden, dass beim Einfügen einer neuen Variablen die entsprechende SPS-Variable "DB_FLOW_PARA.w_OCX_WRITE_DATA" aus der Klappliste ausgewählt wird.

Die folgende Abbildung zeigt die erforderlichen Einstellungen für die Variable, mit der Ausgangsdaten für den OCX-Schreibvorgang dargestellt werden. Wichtig ist dabei, dass der "Datentyp" der Variablen wie unten abgebildet als "Word" definiert und für "Array-Elemente" "1" festgelegt wird. Andernfalls funktioniert der Datenaustausch nicht.

Eichpflichtiger Verkehr

10.14 Projektierung und Betrieb des SIFLOW CT OCX

Bild 10-6 Einrichten der Variablen zur Darstellung von Ausgangsdaten, Bytes 10 und 11

Der "Erfassungszyklus" sollte im Bereich unter 3 Sekunden liegen, da der Kommunikations-Timeout, der vom OCX und der Firmware auf der SIFLOW-Baugruppe gesteuert wird, auf maximal 3 Sekunden festgelegt ist und bei Überschreitung einen Fehler meldet, siehe "ERROR 1" (Seite 105).

10.14.5 Erstellen des HMI-Projekts und Transferieren des Projekts an das Bediengerät

Nachdem das HMI-Projekt eingerichtet ist, muss es generiert werden. Wählen Sie hierzu im WinCC flexible-Menü "Projekt>Generator>Generieren.

Nach der erfolgreichen Generierung können Sie das HMI-Projekt durch Auswählen von "Projekt>Transfer>Transferieren" in das gewünschte Bediengerät übertragen.

Ausführliche Beschreibungen der Generierung und des Transfers von HMI-Projekten finden Sie in der Dokumentation zu WinCC flexible.

10.14 Projektierung und Betrieb des SIFLOW CT OCX

10.14.6 Parametrieren von SIFLOW FC070 Ex CT mit SIMATIC PDM

Um den Datenaustausch mit der Baugruppe SIFLOW FC070 Ex CT zu ermöglichen, müssen die richtigen, durch DR 39 definierten CT-Parameter ordnungsgemäß eingestellt werden. Inbesondere die Versionsdaten (Versionstyp (Groß-/Kleinschreibung beachten), OCX-Hauptund Unternummer) müssen entsprechend der Version des verwendeten OCX eingestellt werden. Die aktuelle Version des OCX wird in WinCC flexible ES im HMI-Projekt angezeigt.

Hinweis

Kennung Prozesswert 1/2

Wenn der Wert "CT-Modus deaktiviert" lautet, sind die OCX-Funktionen deaktiviert. Die SIFLOW-Baugruppe wechselt in diesem Fall **nicht** in den CT-Modus, auch wenn der redundante Digitalausgang verwendet wird.

Wenn der Wert "Kein Prozesswert ausgewählt" lautet, wird bei Verwendung des redundanten Digitalausgangs das OCX deaktiviert und die SIFLOW wechselt in den CT-Modus.

Parameter	Value	Unit	Status
» » » OCX			
SW Version Type	V		
Process Value 1 ID	Mass Flow		
Process Value 2 ID	Volume Flow		
OCX Main Number	1		
OCX Sub Number	0		

Bild 10-7 Parametrierung der SIFLOW FC070 Ex CT

Beim Ändern aus S7: Siehe DR39 CT-Parameter.

Hinweis

Die Softwareversion muss "V" (Großbuchstabe) lauten.

10.15 Schreibzugriff deaktivieren

10.14.7 Daten lesen zwischen dem SIFLOW CT OCX und der SIFLOW Ex-Baugruppe

Um Prozesswert 1 und Prozesswert 2 lesen zu können, bereiten Sie ein SPS-Programm wie unten abgebildet vor:

Bild 10-8 OCX-Beispiel

10.15 Schreibzugriff deaktivieren

Damit die Kommunikation zwischen dem SIFLOW FC070 CT OCX und der Baugruppe SIFLOW FC070 Ex CT möglich ist, muss der Schreibschutzschalter (Seite 35) auf "ON" gestellt sein.

10.16 Ändern von Parametern im Schreibschutzmodus mit SIMATIC PDM

10.16 Ändern von Parametern im Schreibschutzmodus mit SIMATIC PDM

Die folgenden Parameter können im Schreibschutzmodus geändert werden:

» » Limit Monitoring			
» » » Limit 1			
Selection	Mass Flow	100000000000	
Direction	Low Limit		
Setpoint	10,000	%	
Hysteresis	5,0	%	
» » » Limit 2			
Selection	Mass Flow		
Direction	Low Limit		
Setpoint	10,000	%	
Hysteresis	5,0	%	
» » » Limit 3			
Selection	Off		
Direction	Low Limit		
Setpoint	10,000	%	
Hysteresis	5,0	%	
» » » Limit 4			
Selection	Off		
Direction	Low Limit		
Setpoint	10,000	%	
Hysteresis	5,0	%	

Bild 10-9 Grenzwertüberwachung

Beim Ändern über S7 - DB_FLOW_PARA: Siehe Standardeinstellungen für DR12-Grenzwert

» » S7 Interface		
Standalone	No	
S7 Output Value 1	Totalizer 1	
S7 Output Value 2	Totalizer2/batch	
S7 Lifebit Timeout	0	ms

Bild 10-10 S7-Schnittstelle

Beim Ändern über S7 - DB_FLOW_PARA: Siehe DR7-Schnittstellenparameter

Eichpflichtiger Verkehr

10.16 Ändern von Parametern im Schreibschutzmodus mit SIMATIC PDM

» » » S7 Alarms	
S7 Process Alarm 0 Assignment	ST BATCHING (G)
S7 Process Alarm 1 Assignment	Alarm disabled
S7 Process Alarm 2 Assignment	Alarm disabled
S7 Process Alarm 3 Assignment	Alarm disabled
S7 Process Alarm 4 Assignment	Alarm disabled
S7 Process Alarm 5 Assignment	Alarm disabled
S7 Process Alarm 6 Assignment	Alarm disabled
S7 Process Alarm 7 Assignment	Alarm disabled

Bild 10-11 S7-Meldungen

Beim Ändern über S7 - DB_FLOW_PARA: Siehe DR7-Schnittstellenparameter

10.16.1 Ändern von Parametern im Schreibschutzmodus aus S7 bei Massedurchfluss null

Tabelle 10- 5 SIFLOW-Befehle

Code	Name	Beschreibung
10	CMD_TOTALIZER_2_RESET	Summenzähler 2 auf null zurücksetzen und Zählung neu starten
13	CMD_TOTALIZER_2_PRESET	Summenzähler 2 auf den Wert value totalizer2_preset_value voreinstellen und Zählvorgang neu starten

10.16.2 Lesen der aktuellen Hardware- und Firmwareversion aus SIFLOW

Über PDM

Schritt 1: Wählen Sie "Gerät\Laden in PG/PC", um alle Parameter aus SIFLOW zu laden. Jetzt kann die Hardware- und Firmwareversion gelesen werden.

Manufacturer	Siemens	
Product Name	SIFLOW FC070	
Order Number	7ME4 120-2DH21-0EA0	
Serial Number	LBA4000004	
Firmware Revision	V2.0.0	
Hardware Revision	2	
EDD Version	1.01.01	
Firmware Checksum	0xC6290E16	
Firmware Size	0x64410600	
Firmware Name	SIFLOW_Appl_V2-0-0	
Firmware Compilation Date	10/15/2010	

Bild 10-12 Lesen der aktuellen Hardware- und Firmwareversion über PDM

Aus S7

Schritt 1: Lesen Sie alle Parameter mit dem Befehl 649.

Jetzt kann die Hardware- und Firmwareversion gelesen werden. Die Informationen befinden sich in folgenden Datensätzen:

DR32-34: Messumformer-, Messaufnehmer- und Kundendaten

Die genaue Hardwareversion kann aus folgendem Tag gelesen werden: *transmitter_hw_ver*.

Die genaue Fimwareversion kann aus folgendem Tag gelesen werden: fw_version.

10.17 CT-Parameter

Eine Anwendung für den eichpflichtigen Verkehr lässt sich auf zwei Arten einrichten.

1. über den Digitalausgang mit Phasenverschiebung

2. mit der ActiveX-Komponente OCX von SIFLOW CT in einem SIMATIC-HMI-Bediengerät.

Weitere Informationen finden Sie unter Beschreibungen S7-Datensätze (Seite 211).

Die folgenden Tabellen zeigen die Parameter für den eichpflichtigen Verkehr:

CT-Parameter bei Verwendung von SIFLOW mit Redundanzimpulsausgang 90° / 180° (Seite 253).

CT-Parameter bei Verwendung von SIFLOW mit Redundanzfrequenzausgang 90° / 180° (Seite 255).

DR39 CT-Parameter bei Verwendung von SIFLOW mit OCX (Seite 257).

10.18 Überprüfen, dass SIFLOW sich im CT-Modus befindet

Es gibt zwei Möglichkeiten zu überprüfen, ob SIFLOW Ex sich im CT-Modus befindet.

10.18 Überprüfen, dass SIFLOW sich im CT-Modus befindet

1. Über PDM

cess Variables - <u>YYYYYYYYYYYYYYYYY</u> (Online)		
verview Fraction Totalizer		
Mass Flow 0,000000 kg/s	System Status Batch running Batch is held or paused Batch terminated, last batch not completed	
0,000000 0,347222 0,694444 Trend View	☐ trok stage vaue rescrice ☐ Totalizer 1 held ☐ Totalizer 2 held (Paused) ☐ Value above zeroadjustment offset limit ☐ Zeroadjustment in progress ❷ Limit 1 reached ❷ Limit 1 reached	
Volume Flow 0,000000 m ³ /S 0,000000 0,000347 0,000694 Trend View	Umit 3 reached Umit 4 reached DiGTT node was successfully entered DiGTT.UPUT STATE Factor values loaded Simulation active Output 1 forced Digta and firms not in sync. Reached to homen 4 be 21	
Density -0,002459 kg/m ³	Process eror System faut	
Trend View	Trend View	
Sensor Temperature 26,74 degC		
Chue Messages		Heln

In "Process variables" (System status).

Bild 10-13 Überprüfung des CT-Modus

2. Über S7

Lesen Sie die Variable ST_CT_MODE im Systemstatuswort (SC_STATUS). Wenn der Variablenwert 1 beträgt, ist der CT-Modus aktiviert.

Siehe auch "Systemstatusinformation"

11

Funktionen

11.1 Nullpunkteinstellung

Nullpunkteinstellung

Die Nullpunkteinstellung des Durchflussmessers erfolgt durch die Parameter in der folgenden Tabelle:

Parameter	Bezeichnung	Beschreibung
DR3: zero_adjust_time	Nullpunktabgleichszeit	Dauer der Nullpunkteinstellung in [s] (zum Fortschritt siehe DR30 → zero_adjust_progress) 0…65.535 s
DR3: zero_sigma_limit	Zero Sigma Grenzwert	Maximaler von der automatischen Nullpunkteinstellung erlaubter Zero Sigma Wert
DR3: zero_offset_limit	Nullpunkt-Grenzwert	Max. Nullpunktverschiebung der automatischen Nullpunkteinstellung
DR11: zero_offset_preset_value	Nullpunktkorrektur- Sollwert	Standardeinstellungen für die Nullpunktabgleichsfunktion: Wert in Massedurchflusseinheiten

Automatische Nullpunkteinstellung

Die Funktionsbaugruppe SIFLOW FC070 misst und berechnet den richtigen Nullwert automatisch.

Bevor die Nullpunkteinstellung eingeleitet wird, muss das Rohr bis zur absoluten Durchflussrate Null gefüllt sein. Wenn die Nullpunkteinstellung mit dem Befehl CMD_START_AUTO_ZERO_ADJUST eingeleitet wird, werden die Massedurchflusswerte für den konfigurierten Zeitraum (DR3: zero_adjust_time) erfasst und zusammengezählt, und mithilfe folgender Formel ein Durchschnittswert errechnet:

Messaufnehmer-Nullpunkt

Durchschnitt von N Durchflusswerten

x_i ist ein momentaner Durchflusswert N = Dauer * Abfragehäufigkeit Abfragehäufigkeit = 10⁶/2¹⁵ 11.1 Nullpunkteinstellung

Die **Nullpunktabgleichszeit** DR3: zero_adjust_time bestimmt die Dauer der automatischen Nullpunktabgleichung. Der Standardwert 30 s ist normalerweise ausreichend für eine stabile Nullpunktmessung.

Hinweis

Extrem geringe Durchflussmenge

Bei sehr geringer Durchflussmenge muss besonders präzise gemessen werden. In diesem Fall kann zur verbesserten Nullpunktmessung eine lange Integrationszeit gewählt werden.

Während der Nullpunktabgleichung wird das Statusbit ST_ZERO_ADJUST_IN_PROGRESS eingestellt und das Fortschreiten des Vorgangs kann als Prozentsatz in DR31 gescannt werden: zero_adjust_progress.

Nach Fertigstellung von DR3: zero_adjust_time, wird die Standardabweichung DR31: zero_sigma gemäß folgender Formel berechnet:

Nullpunktsigma

Standardabweichung von N Werten

$$s \equiv \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}} = \sqrt{\frac{-N\bar{x}^2 + \sum_{i=1}^{N} x_i^2}{N - 1}}$$

Der Nullpunktsigma-Wert enthält wichtige Rückmeldeinformationen über die Homogenität der Flüssigkeit, z. B. über das Vorhandensein von Blasen oder Partikeln.

Die Standardabweichung muss in einem auf den ermittelten Nullpunkt x bezogenen Fenster liegen.

- Wenn DR31: zero_sigma größer ist als der konfigurierte Grenzwert (DR3: zero_sigma_limit), ist der Fehler PE_ZEROADJ_SIGMA_LIMIT eingestellt. In diesem Fall muss der Benutzer prüfen, ob das Rohr voll ist und die Durchflussrate absolut Null beträgt. Anschließend sollte der Nullpunktabgleich wiederholt werden.
- Wenn der Nullpunkt den Wert DR3: zero_offset_limit übersteigt, sind der Fehler PE_ZEROADJ_OFFSET_LIMIT und das Systemstatusbit ST_ZERO_ADJUST_OFFSET_LIMIT_EXCEEDED eingestellt. Das Statusbit ST_ZERO_ADJUST_OFFSET_LIMIT_EXCEEDED wird mit dem nächsten Befehl CMD_START_AUTO_ZERO_ADJUST zurückgesetzt.
- Wenn DR31: zero_sigma weniger als DR3: zero_sigma_limit ist, ist der Nullpunkt gültig und wird automatisch in DR31: zero_offset_value sowie in SENSORPROM als neuer Nullpunkt für den Messaufnehmer gespeichert. Er bleibt im Fall eines Stromausfalls erhalten.

Bei Abschluss des Nullpunktabgleichs wird das Statusbit ST_ZERO_ADJUST_IN_PROGRESS zurückgesetzt und DR30: zero_adjust_progress wird auf 0 gesetzt.

Während des Nullpunktabgleichs werden keine Parameteränderungen akzeptiert.

11.2 Schleichmengenunterdrückung

Manuelle Nullpunkteinstellung

Nach einem CMD_ZERO_OFFSET_VALUE_PRESET wird DR11: zero_offset_preset_value in DR31: zero_offset_value sowie in SENSORPROM als neuer Nullpunkt für den Messaufnehmer gespeichert. Es wird nicht geprüft, ob DR11: zero_offset_preset_value größer ist als DR3: zero_offset_limit.

Siehe auch

DR3 Grundeinstellungen (R/W) (Seite 215)

DR11 Standardeinstellungen Prozesswert (R/W) (Seite 236)

DR31 Serviceinformationen (R) (Seite 242)

11.2 Schleichmengenunterdrückung

In bestimmten Anwendungen sind keine Durchflusssignale unter einer bestimmten Durchflussmenge erwünscht (Schleichmengenunterdrückung). Ein geringerer Grenzwert zwischen 0 und 10 % kann eingestellt werden, um den Prozesswert durch den Ausgang zu verwenden und den Summenzähler mittels Parameter DR3: low_flow_cut_off.

Dieser Prozentsatz hängt mit der Maximaleinstellung des Massedurchflusses DR3: massflow_max.

Die Schleichmengenunterdrückung beeinflusst die folgenden Prozesswerte:

- Massedurchfluss
- Volumendurchfluss
- Fraktion A Durchfluss
- Fraktion B Durchfluss
- Summenzähler 1
- Summenzähler 2 / Batch

Siehe auch

DR3 Grundeinstellungen (R/W) (Seite 215)

11.3 Leerrohrerkennung

"Leerrohrerkennung" kann mithilfe des Parameters DR3: empty_pipe_detection_on_off eingestellt werden. Diese Funktion dient zur Erkennung einer leeren Rohrleitung.

Ein unterer Grenzwert für die Dichte der Flüssigkeit kann durch den Parameter DR3: empty_pipe_limit eingestellt werden. Wenn der Wert diesen Wert unterschreitet, wird der Prozessfehler PE_EMPTY_PIPE gemeldet.

11.4 Rauschfilter

Für diesen Grenzwert wird keine Hysterese verarbeitet.

PARAMETER	KENNZEICHNUNG	BESCHREIBUNG
DR3: empty_pipe_detection_o n_off	Leerrohrerkennung ein / aus	Funktion zur Leerrohrerkennung Ein / Aus • 0=Aus • 1=Ein
DR3: empty_pipe_limit	Leerrohrgrenzwert	Fehler, wenn die Dichte unter dem Leerrohrgrenzwert -20000.0 … +20000.0 in Schritten von 0,1 liegt

Siehe auch

DR3 Grundeinstellungen (R/W) (Seite 215)

11.4 Rauschfilter

Rauschfilter-Funktion

Die Baugruppe SIFLOW FC070 führt die Signalverarbeitung im Coriolis ASIC nach einem patentierten FFT-Algorithmus durch (FFT = Fast Fourier Transformation). Mit diesem Verfahren können Messaufnehmersignale, die Interferenzen verursachen können, herausgefiltert werden. Treten am Messaufnehmer beispielsweise ein stark pulsierender Durchfluss, wechselnde Pumpfrequenzen oder starke Druckschwankungen auf, kann dies in bestimmten Fällen zu Rauschspannungen in den Messaufnehmersignalen und damit zu Messfehlern führen.

Rauschfilter-Einstellungen

Diese Messfehler lassen sich durch Heraufsetzen des Filterparameters DR3: noise_filterreduzieren. Einstellung 5 ist der maximal mögliche Filtergrad, und Einstellung 1 ist der minimal mögliche Filtergrad.

- 1 = min.
- 2
- 3
- 4
- 5 = max.

Siehe auch

DR3 Grundeinstellungen (R/W) (Seite 215)

Funktionen

11.5 Skalierung und Einheiten-Konvertierung

11.5 Skalierung und Einheiten-Konvertierung

Min. / max. Werte (Skalierung)

Die min. / max. Werte werden durch die Parameter in DR3 eingestellt:

Max. Prozesswerte	Standardeinstellung	Standardeinheit
massflow_max	31,25 falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	kg/s
volumeflow_max	0,001556 falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	m³/s
density_max	2000	kg/m ³
sensor_temperature_max	180 °C falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	°C. SI Einheit: K -205 +250 °C
fraction_A_ flow_max	31,25 kg/s oder 0,001556 m ³ /s falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	kg/s
fraction_B_flow_max	31,25 kg/s oder 0,001556 m ³ /s falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	kg/s
percent_fraction_ a_ max	1,0	1/100 %, z. B. Wert 0,8 = 80 % 0 % +2900 %

Prozesswert min.	Standardeinstellung	Standardeinheit
massflow_min	0 s falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	kg/s
volumeflow_min	0 s falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	m³/s
density_min	100	kg/m ³
sensor_temperature_min	-50 falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	°C. SI Einheit: K -250 +250 °C
fraction_A_ flow_min	0 falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	kg/s
fraction_B_flow_min	0 falls kein SENSORPROM angeschlossen ist, ansonsten an SENSORPROM ablesen	kg/s
percent_fraction_a_min	0	z. B. 0,05 = 5 % 0 % +2900 %

Mit Ausnahme des Werts für Fraktion A, hängen die Werte vom Rohrdurchmesser des verwendeten Messaufnehmers ab.

11.5 Skalierung und Einheiten-Konvertierung

Die min. / max. Werte in DR3 werden hauptsächlich zur Skalierung der Prozesswerte verwendet. Der Bereich zwischen Min. und Max. bezieht sich dabei auf den Anzeigebereich des ASIC Prozesswerts, wobei absolute Werte erzeugt werden.

Hinweis

Der Parameter DR3: massflow_max dient auch als obere Überwachungsgrenze für den Wert DR30: Massendurchfluss. Überwachung erfolgt im ASIC. Bei Überschreitung des Maximalwerts stellt ASIC das STATUS_WL_QMAX_OVERLOAD Bit auf den ASIC Status ein; dies führt zu dem Fehler PE_FLOW_SATURATED.

Hinweis

Die Parameter DR3: sensor_temperature_max und DR3: sensor_temperature_min werden ebenfalls als Überwachungsgrenzen für den Wert DR30: Messaufnehmertemperatur verwendet. Überwachung erfolgt im ASIC. Bei Überschreitung eines Grenzwerts stellt ASIC das STATUS_WL_TEMP_ERROR Bit auf den ASIC Status ein; dies führt dann zu dem Fehler PE_TEMP_MAX oder PE_TEMP_MIN.

Einheiten-Konvertierung

Die Einheiten an den externen Kommunikationsschnittstellen SIMATIC und MODBUS können mit folgenden Parametern für jeden Prozesswert eingestellt werden:

Prozesswert	Einheiten-ID (Standard = SI)
massflow_unit	0255 (SI = kg/s)
volumeflow_unit	0255 (SI = m³/s)
density_unit	0255 (SI = kg/s oder m ³ /s)
temperature_unit	0255 (SI = K)
totalizer_1_unit	0255 (SI = kg oder m ³)
totalizer_2_unit	0255 (SI = kg oder m ³)
density_unit	0255 (SI = kg/m ³)
batch_unit	0255 (SI = kg oder m ³)
pulse_amount_unit	0255 (SI = kg oder m ³)

Die von der Einheit betroffenen Werte, werden an beiden Schnittstellen bei der Annahme von der externen Einheit in SI bzw. beim Senden von SI in die externe Einheit umgerechnet.

Die Umrechnungsfaktoren sind in einer Konstantentabelle in der Firmware gespeichert. Die Einheitentabellen befinden sich im Anhang.

Wenn die SI-Einheit auch an den externen Schnittstellen konfiguriert ist, findet keine Konvertierung statt.

Hinweis

Innerhalb des Funktionsmoduls (ASIC, SENSORPROM, usw.) wird immer die SI-Einheit verwendet.

Siehe auch

DR3 Grundeinstellungen (R/W) (Seite 215)

11.6 Grenzwertüberwachung

Grenzwertüberwachungsfunktion (4 Grenzwerte)

Es können insgesamt 4 Grenzwerte in beliebiger Reihenfolge für die auswählbaren Prozesswerte DR12: limit x_selection zugeordnet werden.

1, 2, 3 oder alle 4 Grenzwert(e) können einem zu überwachenden Prozesswert zugeordnet werden.

Beispiel

4 Grenzwerte für den Massendurchfluss (2 unterer, 2 oberer)

- 2 Grenzwerte für den Massendurchfluss (1 unterer, 1 oberer) 2 Grenzwerte für den Volumendurchfluss (1 unterer, 1 oberer)
- 1 Grenzwert für den Massendurchfluss (1 oberer)
 - 1 Grenzwert für den Volumendurchfluss (1 oberer)
 - 1 Grenzwert für die Dichte (1 unterer)
 - 1 Grenzwert für die Messaufnehmertemperatur (1 oberer)

Der Grenzwert DR12: Grenzwert x_setpoint und die Hysterese DR12: Grenzwert x_hysteresis sind als Prozentsatz des Maximalwerts des ausgewählten Prozesswerts konfiguriert (z. B. für den Massendurchfluss: DR3: massflow_max).

Der Parameter DR12: Grenzwert x_direction definiert die Art des Grenzwerts. Es gibt obere und untere Grenzwerte.

- Im Falle eines unteren Grenzwertes wird das entsprechende Grenzwertbit ST_LIMIT_x im Systemstatus gesetzt, wenn der Prozesswert unter dem Arbeitspunkt liegt. Das Statusbit wird zurückgesetzt, wenn der Prozesswert den Arbeitspunkt plus Hysterese übersteigt.
- Im Falle eines oberen Grenzwertes wird das entsprechende Grenzwertbit ST_LIMIT_x im Systemstatus gesetzt, wenn der Prozesswert über dem Arbeitspunkt liegt. Das Statusbit wird zurückgesetzt wenn der Prozesswert unter dem Arbeitspunkt minus Hysterese liegt.

Bild 11-1 Grenzwerte

Einzige Ausnahme ist, wenn ein Summenzähler für **limit_x_selection** ausgewählt wird. In diesem Fall sind Hysterese und Arbeitspunkt absolute Werte!

Die Auslösung eines S7 Prozessalarms für ein eingestelltes oder zurückgesetztes Grenzwertbit kann mithilfe von **DR7: s7_pral x_assignment** im Status aktiviert werden. Dies gewährleistet eine schnelle Antwort auf eine Grenzwertüberschreitung im PLC Programm.

Siehe auch

DR12 Grenzwerte Standardeinstellungen (R/W) (Seite 237)

11.7 Simulation

Simulationsfunktion

Verschiedene Werte im System können durch **DR10: simulation_enable** auf konfigurierte Simulationswerte eingestellt werden. Es gibt folgende mögliche Einstellungen:

- Simulation Massedurchflusswert
- Simulation Volumendurchflusswert
- Simulation Dichtewert
- Simulation Messaufnehmertemperatur

Funktionen

11.7 Simulation

- Simulation Fraktion A in Prozent
- Simulation Ausgabe 1
- Simulation Ausgangsfrequenz 1
- Simulation Ausgabe 2
- Simulation Ausgangsfrequenz 2
- Simulation Eingangswert
- Fehlersimulation

Sobald mindestens ein Wert simuliert wurde (d.h. mindestens ein Bit in DR10: simulation_enable eingestellt wurde), leuchtet die gelbe SIM LED auf und das Systemstatusbit ST_SIMULATION_ACTIVE wird eingestellt.

Die Simulation kann jederzeit über SIMATIC oder MODBUS aktiviert werden. Die andere Schnittstelle wird in jedem Fall mithilfe des Status ST_SIMULATION_ACTIVE über die Aktivierung informiert.

Die aktuell simulierten Werte können in DR10: simulation_enable abgelesen werden.

Mögliche Werte

Mögliche Werte für DR10: simulation_enable:

SIMULATION_OFF	(WORD) 0x0000
SIMULATION_MASSFLOW_ENABLE	(WORD) 0x0001
SIMULATION_VOLUMEFLOW_ENABLE	(WORD) 0x0002
SIMULATION_DENSITY_ENABLE	(WORD) 0x0004
SIMULATION_SENSOR_TEMP_ENABLE	(WORD) 0x0008
SIMULATION_FRACTION_A_PERCENT_ENABLE	(WORD) 0x0040
SIMULATION_OUTPUT_1_ENABLE	(WORD) 0x0080
SIMULATION_OUTPUT_2_ENABLE	(WORD) 0x0100
SIMULATION_INPUT_ENABLE	(WORD) 0x0200
SIMULATION_ERROR_NO_ENABLE	(WORD) 0x0400

Für Massedurchfluss, Volumendurchfluss, Dichte und Messaufnehmertemperatur muss der simulierte Wert in den richtigen Einheiten eingegeben werden.

Beispiel

Simulation des Massedurchflusses = 1 kg/s:

- DR10: simulation_enable = 0x0001
- DR10: simulation_value_massflow = 1,0
- DR2: massflow_unit = 0 (SI, kg/s)

11.7 Simulation

Zur Simulation von percent_fraction_a muss der Prozentwert eingegeben werden, z. B. zur Simulation eines Durchflusses von Fraktion A mit 35 %:

- DR10: simulation_enable = 0x0040
- DR10: simulation_value_percent_fraction_ a = 35

Das Ergebnis für Anteil A ist 35 % des gemessenen Massedurchflusses (wenn Massendurchfluss für die Fraktion gewählt wurde).

Das Ergebnis für Anteil B ist automatisch berechnet 65 % (100 % minus 35 %) des gemessenen Massedurchflusses (wenn Massendurchfluss für die Fraktion gewählt wurde).

Ausgangssimulation

Beide Ausgänge können über die Force-Funktion der Ausgänge im ASIC simuliert werden.

Mögliche Werte für DR10: simulation_value_output_1 oder 2:

Ausgang niedrig	0
Ausgang hoch	1
Ausgangsfrequenz	2

Mögliche Werte für DR10: simulation_value_output_1(_2)_frequency:

• 0...12500

Die Aktivierung der Simulation wird abgelehnt, wenn eine Batch-Prozedur an einem Ausgang läuft. Dies gilt für beide Ausgänge bei Ausführung eines zweistufigen Batch- oder Quadratur-Laufs. Die Aktivierung muss in diesem Fall zu einem späteren Zeitpunkt wiederholt werden.

Nur die Bedienung der Ausgänge über den SIMATIC IO Bereich s7_control_signals - >digital_output wird als Notauskreislauf anerkannt.

Eingangssimulation

Der Eingangspegel wird vom HW-Eingang nicht gelesen, sondern in der Firmware simuliert. Flanken-/Pegelschätzung am Hardwareeingang **DR6: input_inversion** und die folgende Firmware-Filterung **DR6: input_filter_time** fallen weg. Die SF Reaktion **DR6: digital_input_sf_reaction** wird ebenfalls nicht berücksichtigt. Die in der Konfiguration **DR6: digital_input_function** eingestellte Funktion wird dann ausgeführt.

Fehlersimuation

Wird die Simulation eines Fehlers durch **DR10: simulation_enable** aktiviert, wird der unter **DR10: simulation_value_error_no** eingegebene Fehler als eingestellter Fehler simuliert. Wird die Simulation mit **DR10: simulation_enable** deaktiviert, so wird der Fehler als zurückgesetzt gemeldet.

Bereich: nur SE- und PE-Fehler, keine HE-Fehler.

Siehe auch

DR10 Simulationsdaten (R/W) (Seite 233)

11.8 Ausgang

11.8.1 Digitalausgang

Zwei Digitalausgänge

Der Coriolis-ASIC steuert 2 Digitalausgänge. Im Coriolis-ASIC sind sieben Betriebsarten für Ausgänge einstellbar:

- Impuls (nur Ausgang 1)
- Frequenz (nur Ausgang 1)
- Phasenverschiebungsimpuls (Ausgänge 1 + 2) 90°
- Phasenverschiebungsimpuls (Ausgänge 1 + 2) 180°
- Phasenverschiebungsfrequenz (Ausgänge 1 + 2) 90°
- Phasenverschiebungsfrequenz (Ausgänge 1 + 2) 180°
- Zweistufiger Batch (Ausgänge 1 + 2)
- Batch (nur Ausgang 1)

Ausgang 1

Ausgang 1 kann für folgende Variable verwendet werden:

- Prozesswert als frequenzproportionales Signal
- Prozesswert als mengenabhängige Impulswiederholung
- Mengenabhängige Ventilsteuerung (Batch)

Ausgang 2

Ausgang 2 ist kein unabhängiger Ausgang mit denselben Funktionen wie Ausgang 1, kann aber als zusätzlicher Ausgang für folgende Funktionen verwendet werden.

- Zweistufiger Batch
- Phasenverschiebungsimpuls (90° oder 180°)
- Phasenverschiebungsfrequenz (90° oder 180°)

Steuerung der Ausgänge

Beide Ausgänge sind im zurückgesetzten Zustand am ASIC niedrig. Die von ASIC gesteuerten Digitalausgänge können von der Firmware überschrieben und direkt über die Port-Pins des Controllers gesteuert werden. Dies ist in den folgenden Fällen erforderlich:

- beim Einschalten, bis das System (Messaufnehmer) stabil ist (ca. 40 s)
- beim Ausschalten
- wenn die Firmware die Ausgänge direkt steuern soll (z. B. OD-Signal)
- wenn der Benutzer die Ausgänge direkt vom SIMATIC P-Bus aus steuern will.

Über Parameter wird angegeben, wie die Ausgänge im Falle eines festgelegten OD-Signals (S7 CPU STOP) oder bei einem Ausfall der 5 V-Stromversorgung des P-Busses eingestellt werden sollen.

Außerdem kann die Reaktion unter Berücksichtigung der Ausgänge im Fall eines gegebenen Systemfehlers (SF) konfiguriert werden (DR5: digital output sf reaction).

Die Möglichkeit der direkten Steuerung wird bei der Simulation des Ausgangs nicht verwendet; es wird die Force-Funktion von ASIC verwendet.

Im Normalbetrieb wird der Zustand beider Ausgänge an den LEDs DO1 und DO2 angezeigt.

11.8.2 Impulsausgang

Impulsausgangsfunktion

Die Impulsausgangsfunktion liefert an Ausgang 1 einen Impuls mit der konfigurierbaren Impulsdauer DR5: pulse width und einen Impulsabstand proportional zum gewählten Prozesswert DR5: pulse value selection.

Der Impuls wird immer gemäß dem Durchfluss einer konfigurierbaren Mengendifferenz DR5: pulse mass or volume amount ausgegeben.

Impulslänge = _____

Messwert

Beispiel

Gemessener Wert gemäß pulse_value_selection

DR5: pulse_value_selection = Massendurchfluss

DR3: massflow max = 10 kg/s

DR5: pulse_mass_or_volume_amount = 1 kg

DR5: pulse_width = 1 ms

DR30: massflow = 1 kg/s (konstant)

Ergebnis:

- Impulslänge = 100 ms
- Ausgabefrequenz = 10 Impulse pro Sekunde mit einer Impulsdauer von 1 ms

Der Impulsfrequenzerzeuger für den Ausgang in ASIC kann eine Frequenz zwischen 0,1 Hz und 12 kHz mit einer Auflösung von 0,06 Hz liefern.

DR5: pulse_direction kann benutzt werden, um einzustellen, ob der Impulsausgang nur positive (aufwärts) oder bidirektionale (aufwärts/abwärts) Prozesswerte ausgeben soll.

Siehe auch

DR5 Digitalausgang (R/W) (Seite 221)

11.8.3 Frequenzausgang

Frequenzausgangsfunktion

Die Frequenzausgangsfunktion liefert eine Frequenz (50 % Impuls-Pausen-Verhältnis) an Ausgang 1, die proportional zum gewählten Prozesswert **DR5: frequency_value_selection** ist.

Der Impulsfrequenzerzeuger für den Ausgang in ASIC kann eine Frequenz zwischen 0,1 Hz und 12 kHz mit einer Auflösung von 0,06 Hz liefern.

Die folgenden maximalen Frequenzen können durch Parametrierung ausgewählt werden:

- 0 = 10 kHz
- 1 = 5 kHz
- 2 = 1 kHz
- 3 = 500 Hz

Die konfigurierte Frequenz DR5: frequency_max entspricht zu 100 %.

 $Frequenz = \frac{Messwert}{max. Wert} \times frequency_max$

Beispiel

Gemessener Wert und max. Wert gemäß frequency_value_selection::

- DR5: frequency_value_selection = mass flow
- DR3: massflow_max = 10 kg/s
- DR5: frequency_max = 1 kHz
- DR30: massflow = 5 kg/s

Ergebnis:

• Ausgangsfrequenz = 500 Hz mit 50 % Impuls-Pausen-Verhältnis

DR5: frequency_direction kann benutzt werden, um einzustellen, ob der Frequenzausgang nur positive (aufwärts) oder bidirektionale (aufwärts/abwärts) Prozesswerte ausgeben soll.

DR5: frequency_time_constant dient zum Glätten der Ausgangsfrequenz.

Siehe auch

DR5 Digitalausgang (R/W) (Seite 221)

11.8 Ausgang

11.8.4 Phasenverschiebungsausgang

Phasenverschiebungsfunktion (Impuls oder Frequenz an Ausgang 1 und 2)

Über die Phasenverschiebungsfunktion können die beiden Ausgänge außerdem anzeigen, ob ein Vorwärts- oder Rückwärtsdurchfluss stattfindet.

Die Phasenverschiebungsfunktion kann im Impuls- oder im Frequenzbetrieb aktiviert werden.

- Im Phasenverschiebungs-Impulsbetrieb verhält sich Ausgang 1 wie im normalen Impulsbetrieb. Ausgang 2 erzeugt einen Impuls mit der gleichen Frequenz wie Ausgang 1, jedoch um eine halbe Impulslänge verschoben. Für einen positiven Prozesswert wird Ausgang 2 bezüglich Ausgang 1 um eine halbe Impulslänge verschoben; für einen negativen Prozesswert liegt Ausgang 2 um eine halbe Impulslänge vorne.
- Im Phasenverschiebungs-Frequenzbetrieb verhält sich Ausgang 1 wie im normalen Frequenzbetrieb. Ausgang 2 erzeugt die gleiche Frequenz wie Ausgang 1, jedoch um eine viertel Periodendauer verschoben. Für einen positiven Prozesswert wird Ausgang 2 bezüglich Ausgang 1 um eine viertel Impulslänge verschoben; für einen negativen Prozesswert liegt Ausgang 2 um eine viertel Impulslänge vorne.

11.8.5 Batch-Ausgang

Batch- (Dosier-) Funktion

Der digitale Ausgang kann für die Batch-Funktion durch Einstellen des Parameters DR5: digital_output_function festgelegt werden. Die Batch-Funktion wird zur Messung der Gas- oder Flüssigkeitsmenge verwendet. Hierbei wird durch den Digitalausgang z. B. ein Ventil geöffnet und geschlossen.

Die Messung einer ausströmenden Menge wird mit dem Befehl CMD_BATCH_START gestartet, mit dem der Ausgang auf hoch eingestellt und damit das Ventil geöffnet wird.

Wenn eine voreingestellte Masse oder Volumen DR11: batch_quantity erreicht wurde, wird das Ventil über den digitalen Ausgang geschlossen (= 0). Damit ist die Batch-Prozedur abgeschlossen. Eine neue Batch-Prozedur kann 150 ms nach dem Start der vorhergehenden Batch-Prozedur gestartet werden. Die Wartezeit zwischen Batch-Stopp und neuem Batch-Start muss mindestens 50 ms betragen.

Die Wahl des Prozesswerts, der als Eingangsgröße für die Batch-Funktion dient, erfolgt über DR5: batch_value_selection:

- 1 = Massedurchfluss
- 2 = Anteil A
- 3 = Anteil B
- 4 = Volumendurchfluss

Der Batch-Ausgang wird auf 0 zurückgesetzt, wenn der Frequenzimpulsgenerator zurückgesetzt wird.

Die Funktion Batch-Kompensierung (Offset) ermöglicht, dass eine bestimmte Menge DR11: batch_compensation zur Kompensierung von Ventilverzögerungen hinzugefügt/abgerechnet werden kann.

Ein zusätzlicher Kompensationswert ist die Zeitkonstante DR11: batch_lead_constant, die beim Neukonfigurieren der Ausgangsfunktion für Batch geladen wird. Die Führungskonstante (Zeitkonstante) DR11: batch_lead_constant wird in der Einheit [s] behandelt.

Diese Kompensation berücksichtigt Durchflussschwankungen.

Beispiel:

Einstellen des Parameters batch_lead_constant

- Stellen Sie alle Kompensierungen auf Null (DR11: batch_compensation und DR11: batch_lead_constant).
- Geben Sie die gewünschte Menge ein **DR11: batch_quantity** (M-wanted z. B. 25 kg), und starten das Batch-Verfahren.
- Beobachten Sie den Durchfluss und lesen DR30: massflow direkt vor dem Batch-Stopp (Q-end, z. B. 5000 kg/h) ab.
- Notieren Sie die vom Summenzähler **DR30: totalizer_2_batch** angezeigte Menge und lesen Sie die Menge nach dem Stopp des Summenzählers ab (M-real z. B. 25,5 kg).
- Berechnen Sie die Führungskonstante als:
 - **LeadConst** = (M-real M-wanted) / Q-end.

Hinweis

Führungskonstante (LeadConst) wird in Sekunden angegeben

Für das Beispiel ergibt dies:

LeadConst = (25,5 kg - 25 kg) / (5000 kg/h) = 0,0001 h = 0,36 Sekunden.

 Geben Sie diesen Wert als Führungskonstante ein. Dies ist ein guter Ausgangspunkt, der nur geringfügige Berichtigungen erforderlich macht. SIFLOW FC070 füllt nun 25 kg, auch wenn der Durchfluss sich ändert. (Ändert sich auch die Ventilschließzeit, ist dies nicht der Fall! Die Führungskonstante kann nur wirkliche Durchflussänderungen kompensieren.)

Batch-Timeout-Überwachung

Die Batch-Timeout-Überwachung überprüft, ob die Batch-Prozedur innerhalb der festgelegten Zeit DR5: batch_time_max beendet wurde. Ist dies nicht der Fall, wird ein Fehler PE_BATCH_TIMEOUT erzeugt. Die Überwachung des Batch-Timeout kann mithilfe des Parameters DR5: batch_time_error_on_off ein- und ausgeschaltet werden.

```
Funktionen
```

11.8 Ausgang

Batch-Overrun-Überwachung

Die Batch-Overrun-Überwachung überprüft, ob die Durchflussmenge durch die Ventile im geschlossenen Zustand nicht eine eingestellte Menge DR5: batch_overrun_error_quantity übersteigt. Deshalb kann diese Funktion ein Ventilversagen (kein korrektes Schließen) feststellen, das durch Blockieren, Abnutzung usw. verursacht wird. Bei Überschreitung der Menge wird der Fehler PE_BATCH_OVERRUN angezeigt. Die Überwachung des Batch-Overrun kann mithilfe des Parameters DR5: batch_overrun_on_off ein- und ausgeschaltet werden.

Batch-Zähler

Der Batch-Zähler gibt an, wie sich die Batch-Menge DR11: batch_quantity im Laufe einer Batch-Prozedur ändert. Summenzähler 2 dient als Batch-Zähler DR30: totalizer_2_batch.

- Wenn DR5: batch_counter_up_down = aufwärts ausgewählt wird, zählt der Batch-Zähler von 0 bis zur ausgewählten Menge DR11: batch_quantity aufwärts.
- Wenn DR5: batch_counter_up_down = abwärts ausgewählt wird, zählt der Batch-Zähler von DR11 -> batch_quantity aus abwärts bis auf 0.

Batch-Befehle

Eine Batch-Prozedur kann mit den geeigneten Befehlen gestartet, fortgesetzt oder vollständig angehalten werden.

- CMD_BATCH_START
- CMD_BATCH_HOLD
- CMD_BATCH_CONTINUE
- CMD_BATCH_STOP

Der aktuelle Status der Batch-Prozedur wird im Systemstatusfenster angezeigt.

Bild 11-2 Diagramm Batch-Prozedur-Status

Batch-Status

Der Batch-Status wird durch die folgenden Statusbits im Systemstatus angezeigt:

- ST_BATCHING
- ST_BATCH_HOLD
- ST_BATCH_STOPPED
- ST_BATCH_TWO_STAGE_REACHED

Die Anzahl der gestarteten Batch-Prozeduren wird in DR31: batch_cycle_counter gezählt. Der DR31: batch_cycle_counter kann mithilfe des Befehls CMD_BATCH_CYCLE_COUNTER_RESET auf Null gestellt werden.

Der Ein-Pegel des Ausgangs für die Batch-Funktion kann mithilfe des Parameters DR5: batch_output_polarity definiert werden.

Bei laufender Batch-Verarbeitung werden keine Parameter akzeptiert, die die Batch-Prozedur beeinflussen.

Siehe auch

DR5 Digitalausgang (R/W) (Seite 221)

DR11 Standardeinstellungen Prozesswert (R/W) (Seite 236)

11.8.6 Zweistufiger Batch-Ausgang

Zweistufige Batch-Funktion (Pegel an Ausgang 1 + 2)

Die zweistufige Batch-Funktion dient zur Realisierung einer groben/feinen Dosierung der abzufüllenden Menge. Hierfür werden beide Digitalausgänge benötigt.

Beim Start der Batch-Prozedur werden zuerst beide Ausgänge gemeinsam aktiviert (oben). Dies gewährleistet, dass die Menge rasch abgefüllt wird (2 Ventile). Dies wird im Systemstatus durch das Bit ST_BATCHING angegeben.

Nach DR11: batch_two_stage_level in % von DR11: batch_quantity wurde erreicht, Ausgang 2 wird von ASIC ausgeschaltet. Dies wird vom Systemstatusbit ST_BATCH_TWO_STAGE_REACHED angegeben.

Die noch abzufüllende Menge wird von ASIC durch feine Dosierung kontrolliert, und nur über Ausgang 1. Wenn 100 % der abzufüllenden Menge DR11: batch_quantity erreicht worden sind, wird auch Ausgang 1 ausgeschaltet, und beide Statusbits ST_BATCHING und ST_BATCH_TWO_STAGE_REACHED werden zurückgesetzt, um anzuzeigen, dass die Batch-Prozedur abgeschlossen ist.

Für die zweistufige Batch-Funktion sind beide Ausgangspfade in ASIC mit Ausnahme der Füllmenge identisch eingestellt. Die verschiedenen Mengen führen zu den verschiedenen Ausschaltzeiten der beiden Ausgänge.

Bei laufender Batch-Verarbeitung werden keine Parameter akzeptiert, die die Batch-Prozedur beeinflussen.

Siehe auch

DR11 Standardeinstellungen Prozesswert (R/W) (Seite 236)

11.9 Eingang

11.8.7 Ausgänge einfrieren und erzwingen

Funktion Erzwingen

Nach dem Befehl CMD_FORCE_OUTPUT_ON, werden beide Ausgänge auf eine von DR6: force_frequency_output_value und DR5: frequency_max spezifizierte Frequenz geschaltet. Die eingestellte Ausgangsfrequenz lautet force_frequency_output_value * frequency_max. Der Befehl CMD_FORCE_OUTPUT_OFF schaltet wieder auf die aus dem gemessenen Wert berechnete Frequenz zurück.

Funktion Einfrieren

Nach dem Befehl CMD_FREEZE_OUTPUT_ON werden die aktuellen Ausgangsfrequenzen an beiden Ausgängen eingefroren, um zu gewährleisten, dass sie nicht vom gemessenen Wert geändert werden können. Der Befehl CMD_FREEZE_OUTPUT_OFF schaltet wieder auf die aus dem gemessenen Wert berechnete Frequenz zurück.

Beide Befehle (Erzwingen und Einfrieren) werden nur ausgeführt, wenn die Ausgänge für Frequenz parametriert sind.

11.9 Eingang

11.9.1 Digitaleingang

Der Digitaleingang ist ein Alarmeingang für den Controller. Dadurch wird die kürzestmögliche Reaktionszeit gewährleistet.

Die konfigurierte Firmware-Filter-Zeit **DR6: input_filter_time** startet nach der Erkennung des konfigurierten Flankenübergangs. Der Flankenübergang von Niedrig auf Hoch ist die aktive Flanke; bei Konfigurierung von Invertierung mit **DR6: input_inversion** = ein, ist der Flankenübergang von Hoch auf Niedrig erheblich. Das Ereignis wird nur akzeptiert, wenn der Eingangspegel während der Filterzeit unverändert bleibt. Dies wird auch durch die DI1 LED angezeigt. Der Pegel des Eingangssignals wird auch im Systemstatusbit ST_DIGITAL_INPUT_STATE angegeben.

Digitale Eingangsfunktionen

Das Ereignis löst in Abhängigkeit von der konfigurierten Funktion DR6: digital_input_function einen entsprechenden Befehl aus.

Eingangsfunktion	Flanke/Pegel	Befehl
0 = Aus		
1 = Batch starten	Flanke ↑	CMD_BATCH_START
2 = Batch stoppen	Flanke ↑	CMD_BATCH_STOP
3 = Batch starten / stoppen	Stufe 1 Stufe 0	CMD_BATCH_START CMD_BATCH_STOP
4 = Batch anhalten/fortsetzen	Stufe 1 Stufe 0	CMD_BATCH_HOLD CMD_BATCH_CONTINUE
5 = Summenzähler 1 zurücksetzen	Flanke ↑	CMD_TOTALIZER_1_RESET
6 = Summenzähler 2 rücksetzen	Flanke ↑	CMD_TOTALIZER_2_RESET
7 = Summenzähler (T1 und T2) zurücksetzen	Flanke ↑	CMD_TOTALIZER_1_2_RESET
8 = Nullpunkteinstellung	Flanke ↑	CMD_START_AUTO_ZERO_ADJUST
9 = Force-Ausgang	Stufe 1 Stufe 0	CMD_FORCE_OUTPUT_ON CMD_FORCE_OUTPUT_OFF
10 = Freeze-Ausgang	Stufe 1 Stufe 0	CMD_FREEZE_OUTPUT_ON CMD_FREEZE_OUTPUT_OFF

Die folgenden Funktionen können konfiguriert werden:

Die Art und Weise der Bearbeitung eines Digitaleingangs für einen gegebenen Systemfehler (SF) kann mithilfe des Parameters DR6: digital_input_sf_reaction eingestellt werden.

Der Zustand des Digitaleingangs nach der Firmware-Filterung wird vom Statusbit ST_DIGITAL_INPUT_STATE angezeigt.

11.10 Prozessinformation

11.10.1 Prozesswerte

Prozessinformationen sind Daten, die nur gelesen werden können. Sie können aus der Funktionsbaugruppe über SIMATIC und MODBUS gelesen werden.

Die einzelnen Prozessinformationen werden für die SIMATIC in Datensatz DR30 erfasst und für MODBUS jeweils einzeln unter der jeweiligen MODBUS-Adresse abgelegt.

Die Prozessinformationen werden in der SIFLOW-Funktionsbaugruppe aus den ASIC-Prozesswerten und dem zugehörigen Status gebildet und im Erfassungszyklus des Coriolis-ASIC (ca. 33 ms) aktualisiert.

Die Prozesswerte sind:

- Systemstatus
- Massedurchfluss
- Volumendurchfluss

11.10 Prozessinformation

- Dichte
- Messaufnehmertemperatur
- Fraktion A Durchfluss
- Fraktion B Durchfluss
- Prozent Fraktion A
- Summenzähler 1
- Summenzähler 2 Batch

Prozesswert-Aktualisierungszyklus

Die Daten werden so schnell wie möglich bereitgestellt. Der Aktualisierungszyklus verläuft synchron zum ASIC-Aktualisierungszyklus. Ausgelöst von den neuen Daten, wird alle 33 ms das Auslesen aus dem ASIC und die Verarbeitung von Prozesswerten durchgeführt.

Das zyklische Eintreffen der neuen Daten (33 ms) wird von der Firmware überwacht. Wenn zweimal keine Daten eintreffen, wird ein ASIC-Fehler SE_ASIC_WATCHDOG generiert.

Vor dem Abspeichern des Übertragungspuffers für die SIMATIC-und die MODBUS-Schnittstelle werden die Werte in die konfigurierte Einheit umgewandelt (d. h. die nationale Maßeinheit, die außerhalb der SIFLOW-Funktionsbaugruppe verwendet wird).

11.10.2 Fraktion

Die Fraktion wird als Bestandteil eines Gemisches bestimmt. Dieses Gemisch, z. B. eine Flüssigkeit, besteht aus zwei Komponenten A + B, die individuell bestimmt werden können.

Wenn der Durchflussmesser mit einer bestimmten Fraktion bestellt wird, z. B.°Brix, ist er in der Lage, die prozentuale Konzentration percent_fraction_A von Zucker in einer Lösung aus Wasser (B) + Zucker (A) zu ermitteln.

Berechnen der Fraktion

percent_fraction_A ist ein Prozentsatz, der mit der folgenden Formel berechnet wird:

```
percent_fraction_A [%] = fraction_offset + fraction_factor * % Fraktion
Erklärung:
```

% Fraktion = Unterbrechen

- + $x_1 * T + x_2 * T^2$
- + $(x_3 + x_4 * T + x_5 * T^2) * \rho$
- + $(x_6 + x_7 * T + x_8 * T^2) * \rho^2$
- + $(x_9 + x_{10} * T + x_{11} * T^2) * \rho^3$
- T = FractionTemp
- ρ = FractionDens
- x_n = DR33: fraction_calibration_X0 ... X11
- Unterbrechen = x₀

DR9: fraction_factor ist werkseitig auf 1,000 und DR9: fraction_offset auf 0 eingestellt. Wenn Sie die prozentuale Konzentration im Durchflussmessgerät um 0,5 % erhöhen möchten, müssen Sie **DR9: fraction_factor** auf 1,005 erhöhen. Nach dieser Änderung gibt der Durchflussmesser einen Konzentrationsanstieg von 0,5 % an.

Einer von zwei Eingabewerten kann zur Fraktionsberechnung verwendet werden: Massedurchfluss oder Volumendurchfluss. Der Parameter **DR33: fraction_value_selection** ist werkseitig im SENSORPROM eingestellt und kann nur von der Baugruppen-Firmware erfasst werden.

Die Werte für den anteiligen Durchfluss werden gemäß der folgenden Formel berechnet:

Massedurchfluss:

fraction_A_flow = Massedurchfluss * percent_fraction_A
fraction_B_flow = Massedurchfluss * (1 - percent_fraction_A)
Volumendurchfluss:
fraction_A_flow = Volumendurchfluss * percent_fraction_A
fraction_B_flow = Volumendurchfluss * (1 - percent_fraction_A)

Siehe auch

DR9 Messaufnehmereigenschaften (R/W) (Seite 230)

11.10.3 Summenzähler

SIFLOW FC070 hat 2 unabhängige Summenzähler, die zur Summierung von Massedurchfluss, Fraktion A, Fraktion B oder Volumendurchfluss verwendet werden können.

Sie können Parameter verwenden, um zu bestimmen, welcher Wert summiert werden soll (totalizer_x_selection) oder auch welche Durchflussrichtung zum Zählen verwendet werden soll (totalizer_x_direction).

Die Summenzähler besitzen einen 64-Bit-Zähler in der Firmware.

Hinweis

Eine Änderung des Parameters Totalizer_x_selection bei laufendem Summenzähler kann zu einem undefinierten Zählerwert führen, der als "NaN" (Not a Number, keine Zahl) angezeigt wird. Es wird daher empfohlen, vor dem Ändern dieses Parameters totalizer_x anzuhalten und zurückzusetzen (siehe unten).

Summenzählerwerte

Die Summenzählerwerte sind als DOPPELTE Werte und als GLEITENDE / REALE Werte verfügbar. Beide Typen können mithilfe der Modbus-Adresse gelesen werden. Nur der REALE Wert DR30: totalizer_1 oder DR30: totalizer_2_batch wird in DR30 gespeichert.

11.10 Prozessinformation

Liegt ein Gruppenfehler (SF) vor, wird über den Parameter totalizer_x_fail_mode eine Entscheidung gefällt, welchen Wert der Summenzähler bearbeiten soll. Der Firmware-Summenzähler (64-Bit) setzt die Ausführung während eines SF-Fehlers fort. Der Summenzählerwert (48-Bit) von ASIC, der höchstwahrscheinlich ungültig ist, wird nicht mehr als Differenz benutzt; stattdessen wird ein fester Wert verwendet. Dieser Wert kann der letzte gültige Wert sein, der vor dem Fehler aus dem ASIC ausgelesen wurde, oder er kann Null betragen.

PARAMETER	KENNZEICHNUNG	BESCHREIBUNG / WERTBEREICH
DR4: totalizer_1_selecti on	Auswahl Summenzähler 1	 1 = Massedurchfluss 2 = Fraktion A 3 = Fraktion B 4 = Volumendurchfluss
DR4: totalizer_1_directio n	Richtung Summenzähler 1	 0 = negativ (Drehrichtungsumkehr: nur rückwärts) 1 = positiv (vorwärts: nur vorwärts) 2 = Ausgeglichen (Net: + wenn vorwärts / - wenn rückwärts)
DR4: totalizer_1_fail_mo de	Fehlermodus Summenzähler 1	 0 = STARTEN: Summierung mit Ist- Durchflusswert 1 = HOLD: Summierung wird angehalten (Verwendung von Null) 2 = MEMORY: Summierung mit dem letzten gültigen Wert
DR4: totalizer_2_selecti on	Auswahl Summenzähler 2	 1 = Massedurchfluss 2 = Fraktion A 3 = Fraktion B 4 = Volumendurchfluss
DR4: totalizer_2_directio n	Richtung Summenzähler 2	 0 = negativ (Richtungsumkehr: nur rückwärts) 1 = positiv (vorwärts: nur vorwärts) 2 = ausgeglichen (netto: + wenn vorwärts / - wenn rückwärts)
DR4: totalizer_2_fail_mo de	Fehlermodus Summenzähler 2	 0 = STARTEN: Summierung mit dem Ist- Durchflusswert 1 = HOLD: Summierung wird angehalten (Verwendung von null) 2 = MEMORY: Summierung mit dem letzten gültigen Wert
DR11: totalizer_1_prese t_value	Sollwert Summenzähler 1	Einheit für Volumendurchfluss oder Massedurchfluss gemäß gewählter Quelle
DR11: totalizer_2_prese t_value	Sollwert Summenzähler 2	Einheit für Volumendurchfluss oder Massedurchfluss gemäß gewählter Quelle

PARAMETER	KENNZEICHNUNG	BESCHREIBUNG
DR30: totalizer_1	Summenzähler 1	Einheit und Bereich gemäß Quelle (Massedurchfluss oder Volumendurchfluss)
DR30: totalizer_2_batch	Summenzähler 2 / Batch	Einheit und Bereich gemäß Quelle (Massedurchfluss oder Volumendurchfluss)

Rücksetzen und Voreinstellen der Summenzähler

Die Summenzähler können mithilfe des Befehls CMD_TOTALIZER_x_HOLD angehalten werden. Mit CMD_TOTALIZER_x_CONTINUE werden sie wieder gestartet.

Mit den Summenzählerbefehlen können die zwei Summenzähler einzeln oder gemeinsam behandelt werden.

Wenn die Funktionsbaugruppe startet, wird der Summenzähler zuerst solange angehalten, bis der Messaufnehmer seine Übergangsphase (circa 40 s) abgeschlossen hat. Dann startet die Funktionsbaugruppe und die Werte des 64-Bit-Summenzählers werden vor dem Neustart im FRAM gespeichert.

BEFEHL	KENNZEICHNUNG	BESCHREIBUNG
CMD_TOTALIZER_1_R ESET	Summenzähler 1 zurücksetzen	Zähler 1 auf Null zurücksetzen und Zählen neu starten.
CMD_TOTALIZER_1_H OLD	Summenzähler 1 anhalten	Summenzähler 1 anhalten (wird in einigen Fällen verwendet, wenn die Rohre gereinigt werden und das Reinigungsmittel nicht in der Summierung enthalten sein soll)
CMD_TOTALIZER_1_C ONTINUE	Summenzähler 1 weiterlaufen lassen	Summenzähler 1 nach Anhalten weiterlaufen lassen
CMD_TOTALIZER_1_P RESET	Voreinstellung Summenzähler 1	Summenzähler 1 auf den Wert DR11:totalizer_1_preset_value voreinstellen und Zählen neu starten
CMD_TOTALIZER_2_B ATCH_RESET	Summenzähler 2 / Batch zurücksetzen	Zähler 2 auf Null zurücksetzen und Zählen neu starten
CMD_TOTALIZER_2_H OLD	Summenzähler 2 anhalten	Summenzähler 2 anhalten (wird in einigen Fällen verwendet, wenn die Rohre gereinigt werden und das Reinigungsmittel nicht in der Summierung enthalten sein soll)
CMD_TOTALIZER_2_C ONTINUE	Summenzähler 2 weiterlaufen lassen	Summenzähler 2 nach Anhalten weiterlaufen lassen
CMD_TOTALIZER_2_P RESET	Voreinstellung Summenzähler 2	Summenzähler 2 auf den Wert DR11:totalizer_2_preset_value voreinstellen und Zählen neu starten
CMD_TOTALIZER_1_2 _RESET	Summenzähler 1 und 2 zurücksetzen	Summenzähler 1+2 auf Null zurücksetzen und Zählen neu starten
CMD_TOTALIZER_1_2 _HOLD	Summenzähler 1 und 2 anhalten	Summenzähler 1+2 anhalten (wird in einigen Fällen verwendet, wenn die Rohre gereinigt werden und das Reinigungsmittel nicht in der Summierung enthalten sein soll)

Funktionen

11.11 Datum und Uhrzeit

BEFEHL	KENNZEICHNUNG	BESCHREIBUNG
CMD_TOTALIZER_1_2 _CONTINUE	Summenzähler 1 und 2 weiterlaufen lassen	Summenzähler 1+2 nach Anhalten weiterlaufen lassen
CMD_TOTALIZER_1_2 _PRESET	Voreinstellung Summenzähler 1 und 2	Summenzähler 1 auf den Wert DR11: totalizer_1_preset_value und Summenzähler 2 auf den Wert DR11: totalizer_2_preset_value voreinstellen und Zählen neu starten

Summenzähler 2 bei einem Batch

Solange die Batch-Funktion in DR5: digital_output_function (= 5 oder 6) aktiviert ist, kann der Summenzähler 2 nur für die Batch-Operation verwendet werden. Die Parameter in DR4 und alle Befehle (zurücksetzen, voreinstellen, anhalten, weiterlaufen lassen) von Digitaleingang, SIMATIC und Modbus werden nicht berücksichtigt.

Summenzähler 2 dient als Batch-Zähler DR30: totalizer_2_batch.

Siehe auch

DR30 Prozesswert (R) (Seite 241)

DR4 Summenzähler (R/W) (Seite 219)

DR11 Standardeinstellungen Prozesswert (R/W) (Seite 236)

11.11 Datum und Uhrzeit

Datum und Uhrzeit

Eine absolute Zeit im 8-Byte SIMATIC-Format wird in der SIFLOW FC070-Baugruppe gehalten (Datum und Uhrzeit).

BCD-Format:

- [0] Jahr
- [1] Monat
- [2] Tag
- [3] Stunde
- [4] Minute
- [5] Sekunden
- [6] Millisekunden (100er und 10er Stellen)
- [7] Millisekunden (1er Stellen) + Wochentag (klein 4 Bit)

Beim Startvorgang werden Datum und Uhrzeit auf den letzen Wert vor dem Ausschalten eingestellt (in FRAM gespeichert). Dies führt zu einem Zeitsprung für eingehende Meldungen, die vor den ersten Stellen für Datum und Uhrzeit auftreten (bezüglich aktueller Uhrzeit). Es wird jedoch die richtige Reihenfolge für die zeitliche Sortierung der mit Zeitmarkierungen versehenen Informationen eingehalten.

Die Meldungen werden in das Fehlerprotokoll von Diagnose und Firmware eingetragen, um dem Benutzer die Bestimmung der Uhrzeit des Stromausfalls und das Einstellen der Uhrzeit zu ermöglichen.

Datum und Uhrzeit können mit der SIMATIC über **DR8: date_and_time** eingestellt werden. Die Uhrzeit kann auch durch Weitergabe der Variablen im SIMATIC E/A-Steuersignal eingestellt werden. Die Weitergabe der Variablen erfolgt hier genauso wie für MODBUS mit einer MODBUS Adresse und einem 4-Byte-Wert.

Besitzt die Funktionsbaugruppe SIFLOW FC070 keinen gültigen Wert für **DR8: date_and_time**, wird das Bit ST_DATE_AND_TIME_NOT_SYNC auf den Systemstatus eingestellt. Der Benutzer kann mithilfe dieser Information den Transfer der aktuellen Uhrzeit von SIMATIC CPU starten. Das Bit ST_DATE_AND_TIME_NOT_SYNC wird zurückgesetzt, wenn **DR8: date_and_time** neu empfangen wurde.

Datum und Uhrzeit sollten vom Anwenderprogramm jedesmal zurückgesetzt werden, wenn die Funktionsbaugruppe SIFLOW FC070 neu gestartet wird und in regelmäßigen Abständen zurückgesetzt werden, um es mit Datum und Uhrzeit von SIMATIC CPU zu synchronisieren. So ist präzise Synchronisierung zwischen den Zeitmarkierungen von CPU und Funktionsbaugruppe SIFLOW innerhalb von Sekunden möglich.

Betriebszeitzähler

Die SIFLOW-Funktionsbaugruppe verfügt über zwei Betriebsdauerzähler:

- Gesamt-Betriebsdauer (DR31: operating_time_total)
- Betriebsdauer seit dem letzten Einschalten (DR31: operating_time_powerup)

Beide werden als Serviceinformation in DR31 gespeichert und stündlich aktualisiert. Die Gesamtbetriebszeit wird auch bei Stromausfall sicher im FRAM gespeichert.

Siehe auch

DR7 Schnittstellenparameter (R/W) (Seite 226)

11.12 Serviceinformationen

Serviceinformationen sind Informationen, die nur gelesen werden können. Sie können aus der Funktionsbaugruppe über SIMATIC und MODBUS gelesen werden.

Die separaten Elemente der Serviceinformationen werden für SIMATIC im Datensatz DR31 erfasst und individuell für MODBUS unter der jeweiligen MODBUS-Adresse gespeichert.

Serviceinformationen liefern Angaben zum Zustand des Messaufnehmers und des Senders. Sie werden in der SIFLOW-Funktionsbaugruppe alle 330 ms aktualisiert (3 Hz).

Die Servicedaten sind:

11.12 Serviceinformationen

- Datum und Uhrzeit
- Gesamtbetriebsdauer
- Betriebszeit seit Netzeinschaltung
- Treibersignal
- Sensor 1 Amplitude
- Sensor 2 Amplitude
- Messaufnehmerfrequenz
- Messumformertemperatur
- SENSORPROM installiert
- Wert Nullpunktkorrektur
- Fortschreiten des Nullpunktabgleichs
- Zero Sigma
- Batch-Zykluszähler

Erkennung der Gehäuseinnentemperatur

Die Funktionsbaugruppe SIFLOW FC070 enthält eine Schaltung zur Messung der Gehäuseinnentemperatur.

Die Schaltung gewährleistet einen Temperaturwert mit einer Toleranz von ±2 °C.

Der Wert wird erkannt und in DR31: transmitter_temperature angezeigt.

Übersteigt die Temperatur 85 °C, wird der Fehler SE_TRANSMITTER_TEMPERATURE erzeugt. Fällt die Temperatur unter 80 °C, wird der Fehler als zurückgesetzt gemeldet.

Hiervon werden keine weiteren Temperaturkompensationen abgeleitet.

MODBUS Serviceinformationen

MODBUS Serviceinformationen sind Informationen, die nur gelesen werden können. Sie können aus der Funktionsbaugruppe über SIMATIC und MODBUS gelesen werden.

Die separaten Elemente der MODBUS-Serviceinformationen werden für SIMATIC im Datensatz DR36 erfasst und einzeln für MODBUS unter der jeweiligen MODBUS-Adresse gespeichert.

Die MODBUS-Serviceinformationen sind Informationen zum Status des MODBUS-Anschlusses und des MODBUS-Slave.

Die MODBUS-Servicedaten sind:

- Geräteadresse
- Verwendeter Frameabstand
- Baudrate Hz
- Anzahl der Paritätsfehler
- Anzahl der Framing-Fehler
Funktionen 11.12 Serviceinformationen

- Anzahl der CRC-Fehler
- Anzahl erhaltener OK-Meldungen
- Letzter Spulenfehler (CoilAddr)
- Nr. letzter Spulenfehler
- Letzter HoldReg-Fehler (Holdregaddr)
- Nr. letzter HoldReg-Fehler
- Fehler anliegend 1
- Fehler anliegend 2
- Fehler anliegend 3
- Fehler anliegend 4
- Fehler anliegend 5
- Fehler anliegend 6
- Fehler anliegend 7
- Fehler anliegend 8
- Fehler anliegend 9
- Laufanzeige

Siehe auch

DR31 Serviceinformationen (R) (Seite 242)

Funktionen

11.12 Serviceinformationen

12

Alarm-, Fehler- und Systemmeldungen

12.1 Meldungen und Diagnosen

Meldungstypen

Die Meldungen der SIFLOW FC070 lassen sich in zwei Arten aufteilen:

- 1. Asynchrone Meldungen
- 2. Synchrone Meldungen

Asynchrone Meldungen

Asynchrone Meldungen können jederzeit durch ein unerwartetes Ereignis erzeugt werden. Zu solchen Ereignissen gehören interne und externe Hardwarefehler (Statusmeldungen) und Technologiemeldungen, die spontan während einer Messung auftreten können.

Zu den asynchronen Meldungen gehörige Fehlertypen:

- Messaufnehmerfehler (SE) (Seite 158) die Fehler an Funktionsbaugruppe, Messaufnehmer, SENSORPROM oder Verkabelung (interne Fehler) anzeigen
- Prozessfehler (PE) (Seite 158) für Fehler im Prozess (externe Fehler)

Synchrone Meldungen

Synchrone Meldungen sind immer das Ergebnis von Benutzertätigkeit. Dazu gehören:

- Datenfehler, wenn in einem an die Funktionsbaugruppe gesendeten Datenpaket ein Plausibilitätsfehler aufgetreten ist und das Datenpaket von der Funktionsbaugruppe zurückgewiesen wurde.
- Betriebsfehler, wenn die Funktionsbaugruppe in ihrem aktuellen Zustand den gesendeten Befehl nicht ausführen kann.

Zu den synchronen Meldungen gehörige Fehlertypen:

• Daten- und Betriebsfehler (HE) (Seite 162).

Hinweis

Systemstatusinformationen

Systemstatusinformationen sind keine Meldungen. Die Statusanzeigen beschreiben den Zustand der Funktionsbaugruppe im Normalbetrieb und können jederzeit beobachtet bzw. ausgewertet werden.

Siehe auch: Systemstatusinformationen (Seite 170).

12.1 Meldungen und Diagnosen

Meldungspfade

Die Meldungen von SIFLOW FC070 erreichen den Benutzer auf verschiedenen Wegen. Beim Konfigurieren muss der korrekte Meldungspfad zur Weitergabe oder Bearbeitung ausgewählt werden.

Die Meldungen werden zu zwei wesentlichen Zwecken bearbeitet:

- Zur Anzeige in einem Bedienfeld
- Zur Verbindung in der Steuerungssoftware, um eine bestimmte Prozessreaktion auszulösen.

Folgende Meldungspfade können ausgewählt werden:

- Ausgabe über die Signalausgänge der Funktionsbaugruppe
- Diagnosealarme in SIMATIC CPU mit Auswertung durch OB82
- Prozessalarme in SIMATIC CPU mit Auswertung in den Prozessalarm OBs
- Ausgabe von Meldungspuffer an SIMATIC PDM

Erkennung und Bearbeitung von Meldungen

Es gibt vier verschiedene Arten zur Erkennung und Bearbeitung von Meldungen:

• Funktionsbaugruppe

Alle Meldungen von SIFLOW FC070 können mithilfe von S7 FB SIFL_FC (FB95) vollständig erkannt und im PLC bearbeitet werden. Mithilfe der Ausgangsvariablen FB_ERR werden Fehler während der Bearbeitung des jeweiligen FB zusätzlich angezeigt.

Diagnosealarme

Die Diagnosealarme können zur Erkennung von Statusmeldungen (Hardwarefehler) in der SIMATIC CPU benutzt werden.

- Sie können die Ursache f
 ür den Fehler in der Baugruppendiagnose in S7 anzeigen (siehe "Hardwarediagnose" in der S7-Onlinehilfe).
- Sie können auch die Diagnosemeldungen mit SFCs im Anwenderprogramm auslesen.
- Prozessalarme

Prozessalarme können benutzt werden, um extrem flexibel auf Prozessmeldungen oder bestimmte Statusinformationen zu reagieren.

- Sie können die Ursache f
 ür den Fehler in der Baugruppendiagnose in S7 anzeigen (siehe "Hardwarediagnose" in der S7-Onlinehilfe).
- Sie können auch die Diagnosemeldungen mit SFCs im Anwenderprogramm auslesen.

• Ausgabe an SIMATIC PDM

In SIMATIC PDM können Sie einen Fehlerbericht und eine Liste aktuell anstehender Fehler im Menü "Fehler-Logbuch" anzeigen.

12.2 Alarmverhalten

Einleitung

Dieser Abschnitt beschreibt das Alarmverhalten der SIFLOW FC070. Prinzipiell sind zwei Alarmarten zu unterscheiden:

- Diagnosealarm
- Prozessalarm

Ausführliche Informationen zu den nachstehend erwähnten OBs und SFCs enthält die S7-Onlinehilfe.

Alarme freigeben

Alarme sind zwar voreingestellt, aber ohne entsprechende Parametrierung gesperrt. Die Alarmfreigabe parametrieren Sie, indem Sie in HW Konfig auf die entsprechende Funktionsbaugruppe doppelklicken oder diese markieren und über Objekteigenschaften das Register Grundparameter anwählen.

Diagnosealarm

Wenn Sie Diagnosealarme freigegeben haben, dann werden kommende Fehlerereignisse (erstes Auftreten) und gehende Fehlerereignisse (Meldung nach Fehlerbeseitigung) durch einen Alarm gemeldet.

Die CPU unterbricht die Verarbeitung des Anwenderprogramms und führt den Diagnosealarm-Baustein OB82 aus.

Sie können in Ihrem Anwenderprogramm im OB82 den SFC 51 oder SFC 59 aufrufen, um von der Baugruppe detaillierte Diagnoseinformationen zu erhalten.

Die Diagnoseinformationen sind bis zum Verlassen des OB82 konsistent. Mit dem Beenden des OB82 wird der Diagnosealarm auf der Baugruppe quittiert.

Auslesen von Diagnosemeldungen

Sie können die ersten 4 Byte des Diagnosedatensatzes 1 über die Variable OB82_MDL_DEFECT im Anwenderprogramm auslesen. Die restlichen (oder auch alle) Bytes können über SFC51 "RDSYSST" (Auslesen einer SZL-Teileliste) gelesen werden. Verwenden Sie möglichst nicht die Systemfunktion "Datensatz lesen", da hierdurch Inkonsistenzen zum Alarm auftreten können.

Sie können die Ursache für den Fehler in der Baugruppendiagnose in S 7 anzeigen (siehe S7-Onlinehilfe).

Diagnosemeldung über die SF-LED

Die Funktionsbaugruppe zeigt Ihnen Fehler über die SF-LED (Sammelfehler-LED) an. Die SF-LED leuchtet, sobald eine Diagnosemeldung von der Funktionsbaugruppe ausgelöst wird. Sie erlischt, wenn alle Fehler behoben sind.

Die SF-LED leuchtet auch bei externen Fehlern (Kurzschluss der Geberversorgung), unabhängig vom Betriebszustand der CPU (bei NETZ EIN).

12.3 Diagnosedaten

Prozessalarm

Die SIFLOW FC070 kann 8 Prozessalarm-Ereignisse verwalten. Jedem Prozessalarm-Ereignis kann per Parametrierung ein bestimmtes Signal zugeordnet werden. Als Signal kann ein kommender HE (Bedien- und Datenfehler) oder ein kommender/gehender PE/SE (Prozessfehler/Messaufnehmerfehler) oder ein kommendes/gehendes Systemstatusbit zugeordnet werden.

Die Parametrierung ist jederzeit (im Betriebszustand RUN über das Anwenderprogramm) änderbar.

Anstehende Prozessalarme lösen in der CPU eine Prozessalarmbearbeitung (OB 40) aus. Hierbei unterbricht die CPU die Bearbeitung des Anwenderprogramms bzw. der niederprioren Prioritätsklassen.

Im Anwenderprogramm des Prozessalarm-OBs (OB 40) können Sie festlegen, wie die SPS auf einen Flankenwechsel reagieren soll. Mit dem Beenden des Prozessalarm-OBs wird der Prozessalarm auf der Baugruppe quittiert.

Die Baugruppe kann 8 Alarme zwischenspeichern. Wenn keine höherprioren Prioritätsklassen zur Bearbeitung anstehen, werden die zwischengespeicherten Alarme (aller Baugruppen) in der Reihenfolge ihres Auftretens von der CPU abgearbeitet.

Verlust Prozessalarm

Wurde ein Alarm zwischengespeichert und tritt ein weiterer Alarm auf, bevor der erste von der CPU bearbeitet wurde, so wird ein Diagnosealarm "Prozessalarm verloren" ausgelöst.

Weitere Alarme werden dann so lange nicht mehr erfasst, bis der oder die zwischengespeicherte(n) Alarm(e) vollständig abgearbeitet wurde(n).

Alarmauslösende Kanäle

Welcher Kanal den Prozessalarm ausgelöst hat, wird in der Startinformation des OB 40 in der Variablen OB40_POINT_ADDR eingetragen.

Die Diagnosemeldungen mit möglichen Ursachen und Abhilfemaßnahmen finden Sie in der Tabelle "Messaufnehmerfehler und Prozessfehler" (Seite 158) und in der Tabelle "Datenund Bedienfehler" (Seite 162).

12.3 Diagnosedaten

Einleitung

In den Diagnosedaten sind Fehlermeldungen vorhanden.

In diesem Kapitel wird die Struktur der Diagnosedaten in Systemdaten beschrieben. Sie müssen mit dieser Konfiguration vertraut sein, wenn Sie die Diagnosedaten der Funktionsbaugruppe SIFLOW FC070 im S7-Anwenderprogramm auswerten wollen.

Hinweis

Die Auswertung von Fehler-OBs (E/A Zugriffsfehler, Rahmenfehleralarme, Hot-Swapping-Alarme, Diagnosealarme, Prozessalarme) wird nicht in der Funktionsbaugruppe SIFL_FC (für S7) durchgeführt, sondern muss in den Standardalarm-OBs (Diagnosealarm: OB82, Prozessalarm: OB40) durchgeführt werden.

Anforderungen

Zur Erstellung parametrierbarer Diagnosemeldungen müssen folgende Voraussetzungen erfüllt sein:

- Der statische Grundparameter "Alarmauswahl" muss eingestellt sein. Siehe Abschnitt zur Programmierung in SIMATIC S7 (Seite 59).
- Der Parameter "Alarmerstellung" muss für den zugehörigen Alarm aktiviert sein. Siehe Abschnitt zur Programmierung in SIMATIC S7 (Seite 59).

Wenn diese Voraussetzungen nicht erfüllt sind, werden keine parametrierbaren Diagnosealarme ausgelöst.

Wenn diese Voraussetzungen erfüllt sind, führt jede Änderung des Diagnosezustands in der Funktionsbaugruppe oder dem Messaufnehmer zu einem Diagnosealarm.

Reaktionen auf Diagnosealarm in S7

Durch Diagnosealarm ausgelöste Aktionen:

- Die Diagnosemeldung wird in die Diagnose der Funktionsbaugruppe eingegeben.
- Die rote SF LED-Anzeige der Funktionsbaugruppe leuchtet auf.
- Wenn Sie in S7 "Diagnosealarm aktivieren" parametriert haben, werden die Diagnosedaten an die CPU übergeben und wird ein Diagnosealarm ausgelöst, durch den OB82 aktiviert wird. Die rote SF LED leuchtet. Die Diagnosemeldungen können in OB82 gelesen werden.

Parallel zu OB82 wird die Diagnosemeldung ohne Beteiligung eines Anwenderprogramms automatisch in HW-Konfig angezeigt (**PLC > Modulstatus**, **Diagnosealarm** und **Diagnosespeicher**).

Bis zu S7 V5.3 werden die Diagnosealarme als Zahlen angezeigt, ab V5.4 aufwärts in Volltext.

SE- und PE-Fehler werden im Diagnosespeicher in Volltext angezeigt (auch bei Verwendung von S7 V5.3), HE-Fehler immer als Zahlen.

Die Diagnosemeldungen mit möglichen Ursachen und Abhilfemaßnahmen finden Sie in der Tabelle "Messaufnehmerfehler und Prozessfehler" (Seite 158) und in der Tabelle "Datenund Bedienerfehler" (Seite 162). 12.3 Diagnosedaten

In Datensätzen gespeicherte Diagnosedaten

Die Diagnosedaten der Funktionsbaugruppe SIFLOW FC070 sind 16 Bytes lang und befinden sich in den Datensätzen 0 und 1:

- Datensatz 0 enthält 4 Bytes Diagnosedaten zur Beschreibung des aktuellen Zustands des Automationssystems.
- Datensatz 1 enthält 4 Bytes Diagnosedaten, die ebenfalls in Datensatz 0 gespeichert sind, sowie weitere Diagnosedaten. Die übrigen 4 Bytes (Bytes 12 – 15) werden nicht benutzt.

Tabelle 12- 1	Überblick i	über Diagn	osedaten

Byte	DR	Diagnosedaten
03	0 / 1	Systemdiagnosedaten
47	1	Baugruppenspezifische Diagnosedaten
811	1	Messaufnehmerspezifische und prozessspezifische Diagnosedaten
1215	1	Reserviert

Verweis

Eine ausführliche Beschreibung des Auswertungsprinzips der Diagnosedaten von Funktionsbaugruppen im Anwenderprogramm und eine Beschreibung der dazu verwendbaren SFCs finden sich in den Gerätehandbüchern zu S7.

Auslesen der Diagnosedatensätze

Sie können die Ursache für den Fehler in der Baugruppendiagnose in S7 anzeigen.

Sie können z.B. mit SFC 59 "RD_REC" (Datensatz lesen) einen spezifischen Datensatz der adressierten Funktionsbaugruppe lesen.

Referenzen

Weitere Möglichkeiten zum Auslesen der Diagnosen finden Sie in

- der Betriebsanleitung f
 ür ET 200M dezentrales E/A-System (http://support.automation.siemens.com/WW/view/en/1142798/0/de)
- SIMATIC Softwarehandbuch "Programmieren mit STEP 7 V5.x" (http://support.automation.siemens.com/WW/view/en/18652056/0/de)

12.4 Systemdiagnosedaten Bytes 0 bis 3

Einleitung

Im unten stehenden Abschnitt werden Struktur und Inhalt der verschiedenen Bytes in den Diagnosedaten beschrieben.

Hinweis

Ein Fehler wird stets durch ein logisches "1" am relevanten Bit gekennzeichnet.

Diagnosedatensatz DR0/DR1: Bytes 0 und 1

Bild 12-1 Bytes 0 und 1 von Diagnosedaten

Modultypen

In folgender Tabelle werden die IDs der Funktionsmodultypen aufgelistet (Bits 0 bis 3 in Byte 1).

Tabelle	12-2	IDs der	Modultypen
rabene	12 2	103 001	modultypon

ID	Modultyp	
0101	Analogmodul	
0110	CPU	
1000	Funktionsmodul, z.B. SIFLOW FC070	
1100	СР	
1111	Digitalmodul	

12.5 Baugruppenspezifische Diagnosedaten: Bytes 4 bis 7

Diagnosedatensatz DR0/DR1: Bytes 2 und 3

Bild 12-2 Bytes 2 und 3 von Diagnosedaten

12.5 Baugruppenspezifische Diagnosedaten: Bytes 4 bis 7

Einleitung

Die folgende Abbildung zeigt die modulspezifischen Diagnosedaten für das Funktionsmodul SIFLOW FC070.

12.6 Messaufnehmer- und prozessspezifische Diagnosedaten: Bytes 8 bis 11

Diagnosedatensatz DR1: Bytes 4 bis 7

12.6 Messaufnehmer- und prozessspezifische Diagnosedaten: Bytes 8

bis 11

Einleitung

Datensatz 1 enthält die messaufnehmerspezifischen und prozessspezifischen Diagnosedaten in den Bytes 8 bis 11. Folgende Abbildung zeigt die Zuweisung der Diagnosebytes für das Funktionsmodul SIFLOW FC070. 12.6 Messaufnehmer- und prozessspezifische Diagnosedaten: Bytes 8 bis 11

Diagnosedatensatz DR1: Bytes 8 bis 11

12.7 Fehlermeldungen der SIFLOW FC070

Hinweis

Solange ein Fehler vorliegt, ist das entsprechende Bit immer auf "1" eingestellt

Siehe auch:

- Fehlermeldungen der SIFLOW FC070 (Seite 157)
- Messaufnehmerfehler (SE) und Prozessfehler (PE) (Seite 158)
- Daten- und Betriebsfehler (HE) (Seite 162)

12.7 Fehlermeldungen der SIFLOW FC070

12.7.1 Übersicht Fehlertypen

Tabelle 12-3 SIFLOW FC070 Fehlertypen

ID-Wert	Тур	Typ (SIFLOW)
0	-	Kein Fehler
1	SE	Messaufnehmerfehler (Messumformer, Messaufnehmer, SENSORPROM, Kabel)
2	PE	Prozessfehler
4	HE	Bedienfehler

- Alle SE/PE-Fehler sind Einstellungs- und Rücksetzungsfehler, d. h. eingehende (C) und ausgehende (G) Fehler.
 Ein auftretender SE/PE-Fehler ist ein eingehender Fehler (C) und das höchstwertige Bit wird gesetzt.
 Ein nicht mehr aktiver SE/PE-Fehler ist ein ausgehender Fehler (G) und das höchstwertige Bit wird zurückgesetzt.
 Siehe auch "Messaufnehmer- und Prozessfehler (Seite 158)".
- HE-Fehler sind Ereignisse (kein Rücksetzungszustand).

SIMATIC-Fehlerklassen

- Alle Messaufnehmerfehler (SE LED Ein) werden als interne Fehler behandelt (und als SF).
- Alle Prozessfehler (PE LED Ein) werden als externe Fehler behandelt (und als SF).
- Alle Daten- und Betriebsfehler werden als externe Fehler behandelt (keine LED Ein).

12.7 Fehlermeldungen der SIFLOW FC070

NAMUR VDI 2650 Klassen

Klasse ID	Klasse	Bedeutung	Beschreibung
1	F	Fehler (Defekt)	Geänderte Konfiguration, lokaler Betrieb, voreingestellter Wert vorhanden
2	М	Wartungsanforderung	Kurzfristige Wartung erforderlich, mittelfristige Wartung erforderlich
3	С	Prüfung	Geräteinterne Fehlerursache, prozessabhängige Fehlerursache
4	S	Außerhalb der Spezifikation	Betrieb außerhalb der Spezifikation, unsicher da Beeinflussung des Prozesses

Tabelle 12-4 NAMUR VDI 2650 Klassen

12.7.2 Messaufnehmerfehler (SE) und Prozessfehler (PE)

Die folgenden Tabellen listen auf:

- Messaufnehmerfehler (SE) die Fehler an Funktionsbaugruppe, Messaufnehmer, SENSORPROM oder Verkabelung (interne Fehler) anzeigen
- Prozessfehler (PE) für Fehler im Prozess (externe Fehler)

Hinweis

Alle Messaufnehmerfehler (einschließlich Messumformerfehler) führen zum Aufleuchten der roten SE LED und stellen das entsprechende Bit ST_SENSOR_ERROR auf den Systemstatus ein.

Alle Prozessfehler führen zum Aufleuchten der roten PE LED und stellen das entsprechende Bit ST_PROCESS_ERROR auf den Systemstatus ein.

Tabelle 12- 5	Messaufnehmerfehler u	nd Prozessfehler	(1): Fehlerklassen
---------------	-----------------------	------------------	--------------------

Nr.	Diagnosealarm	SE / PE	Namur	S7 int./ext.	S7 Ereignis ID (HEX)
1	ASIC Schreibfehler CI	SE	F	i	F5601001
2	ASIC Watchdog	SE	F	i	F5601002
3	ASIC Prozess-Zyklusfehler	SE	F	i	F5601003
4	Fehler Empfangsphase	SE	F	i	F5601004
5	Fehler Messaufnehmer-Level	SE	F	i	F5601005
6	Temp. ADC-Fehler	SE	F	i	F5601006
7	ASIC Überlauftemperatur	SE	F	i	F5601007
8	ASIC Überlauf Massedurchflusswert	SE	F	i	F5601008
9	ASIC Überlauf Dichte	SE	F	i	F5601009
10	ASIC Überlauf Fraktion	SE	F	i	F560100A
11	Driver-Frequenz außerhalb zulässigem Bereich (Driver-Phase)	SE	F	i	F560100B

12.7 Fehlermeldungen der SIFLOW FC070

Nr.	Diagnosealarm	SE / PE	Namur	S7 int./ext.	S7 Ereignis ID (HEX)
12	Datenfehler PROM Wandler	SE	F	i	F560100C
13	SENSORPROM nicht installiert	SE	М	i/e	FD60100D
14	SENSORPROM Datenfehler	SE	М	i/e	FD60100E
15	SENSORPROM ID Fehler	SE	М	i/e	FD60100F
16	SENSORPROM Zugriffsfehler	SE	М	i/e	FD601010
17	Temperatur Messumformer zu hoch	SE	М	Ι	F5601011
18	Niedrige Empfangsamplitude	SE	F	i	F5601012
19	Durchfluss gesättigt	PE	С	е	F9601013
20	Ausgangsfrequenz gesättigt	PE	С	е	F9601014
21	Temp_max	PE	С	е	F9601015
22	Temp_min	PE	С	е	F9601016
23	Impulsüberlauf	PE	С	е	F9601017
24	Batch-Verarbeitung - Negativer Fluss	PE	С	е	F9601018
25	Batch-Verarbeitung - Time-Out	PE	М	е	F9601019
26	Batch-Verarbeitung - Überlauf	PE	М	е	F960101A
27	Leerrohr (Dichte < DR3: empty_pipe_limit)	PE	S	е	F960101B
28	Volumendurchfluss außerhalb zulässigem Bereich	PE	S	е	F960101C
29	Nullpunkteinstellung über Grenzwert für Abweichung (Zero_sigma > DR3: zero_sigma_limit)	PE	S	е	F960101D
30	Nullpunkteinstellung über Grenzwert für Sigma (Zero_offset_value > DR3: zero_offset_limit)	PE	S	е	F960101E
31	Fehler des Einstellungswertes Summenzähler	SE	S	е	F560101F
32	FRAM Fehler	SE	F	i	F5601020
33	DRAM Fehler	SE	F	i	F5601021
34	Anlauf verursacht durch Rücksetzen des Watchdogs	SE	F	i	F5601022
35	Anlauf verursacht durch Programmcode-Fehler	SE	F	i	F5601023
36	Verlust Prozessalarm	SE	F	i	F5601024
37	Parameterfehler	SE	F	i	F5601025
38	Lifebit Überwachung S7 Time-Out	SE	F	i	F5601026
39	Modbus-Kommunikationsfehler	SE	М	i/e	FD601027
40	Fehler der Spannungsversorgung des internen Moduls	SE	М	i/e	FD601028

Siehe auch Übersicht Fehlertypen (Seite 157)

12.7 Fehlermeldungen der SIFLOW FC070

Nr.	Diagnosealarm	Wahrscheinliche Fehlerursache	Zur Korrektur oder Vermeidung von Fehlern
1	ASIC Schreibfehler CI	Keine Übertragung auf Befehlsschnittstellenbereich möglich	Messumformer neu starten – austauschen, wenn Fehler weiterhin auftritt
2	ASIC Watchdog	Laufzeitüberwachung	Messumformer neustarten – austauschen, wenn Fehler weiterhin auftritt
3	ASIC Prozess- Zyklusfehler	Prozess-Zykluszeit länger als 32 768 ms	Messumformer neu starten – austauschen, wenn Fehler weiterhin auftritt
4	Aufnahme	Phasendifferenz zwischen Kanal 1 und 2 übersteigt den eingestellten Grenzwert	Prüfen Sie Verkabelung und Messaufnehmer
5	Fehler Messaufnehmer- Level	Eingangspegel zu hoch – Überlauf bei Verarbeitung	Prüfen Sie Verkabelung und Messaufnehmer
6	Temperatur ADC-Fehler	Primäre Temperaturmesswerte nicht in der richtigen Reihenfolge oder über dem Grenzwert	Prüfen Sie Verkabelung und Messaufnehmer
7	ASIC Überlauftemperatur	Überlauf bei Temperaturberechnungen	Prüfen Sie Verkabelung und Messaufnehmer
8	ASIC Überlauf Massedurchflusswert	Überlauf bei Massedurchfluss-Zeitberechnung	Prüfen Sie Verkabelung und Messaufnehmer
9	ASIC Überlauf Dichte	Überlauf bei Dichteberechnung	Prüfen Sie Verkabelung und Messaufnehmer
10	ASIC Überlauf Fraktion	Überlauf bei Fraktionsberechnung	Prüfen Sie Verkabelung und Messaufnehmer
11	Driver-Frequenz außerhalb zulässigem Bereich (Driver-Phase)	Driver-Frequenz außerhalb zulässigem Bereich	Prüfen Sie Verkabelung und Messaufnehmer
12	Datenfehler PROM Wandler	Daten im PROM Wandler sind nicht zuverlässig (falsche Prüfsumme). Stattdessen werden Werkseinstellungen verwendet. PROM Wandler wird automatisch auf werkseitig eingestellte Standardwerte eingestellt.	Messumformer auswechseln
13	SENSORPROM nicht installiert	Kein SENSORPROM [®] installiert. Bezugsdaten von internem PROM Wandler werden verwendet.	Installation von SENSORPROM. Geforderte SPROM Fehleroption ignorieren.
14	SENSORPROM Datenfehler	Daten im SENSORPROM [®] sind nicht zuverlässig (falsche Prüfsumme). Bezugsdaten von internem PROM Wandler werden verwendet.	SENSORPROM auswechseln
15	SENSORPROM ID Fehler	SENSORPROM [®] entspricht nicht der Produkt-ID. Fehler in den SENSORPROM [®] -Daten oder falscher SENSORPROM [®] installiert. Bezugsdaten von internem PROM-Wandler werden verwendet.	SENSORPROM austauschen
16	SENSORPROM Zugriffsfehler	Lesen von oder Schreiben auf SENSORPROM [®] nicht möglich. Bezugsdaten von internem PROM- Wandler werden verwendet.	SENSORPROM austauschen
17	Temperatur Messumformer zu hoch	Temperatur im Messumformermodul zu hoch.	Umgebungstemperatur senken

Tabelle 12-6 Messaufnehmerfehler und Prozessfehler (2): Fehlerursachen und Korrekturmaßnahmen

Nr.	Diagnosealarm	Wahrscheinliche Fehlerursache	Zur Korrektur oder Vermeidung von Fehlern
18	Niedrige Empfangsamplitude	Aufnahmeamplitude zu gering.	Verdrahtung und Messaufnehmer überprüfen
19	Durchfluss gesättigt	Durchflussrate über maximalem Massedurchfluss.	Einstellung des maximalen Massedurchflusses vornehmen
20	Ausgangsfrequenz gesättigt	Frequenz über der maximalen Frequenz.	Frequenzeinstellung vornehmen
21	Temp_max	Temperatur außerhalb der zulässigen Grenzwerte.	Temperatureinstellungen vornehmen
22	Temp_min	Temperatur außerhalb der zulässigen Grenzwerte.	Temperatureinstellungen vornehmen
23	Impulsüberlauf	Durchflussrate im Vergleich zu Impulslänge und Menge pro Impuls zu hoch	Impulseinstellungen vornehmen
24	Batch-Verarbeitung - Negativer Fluss	Negativer Durchfluss.	Installation überprüfen
25	Batch-Verarbeitung - Time-Out	Batch-Verarbeitung hat eine voreingestellte Maximaldauer überschritten.	Installation überprüfen
26	Batch-Verarbeitung - Überlauf	Batch-Verarbeitung angehalten, aber der Durchfluss im Rohr noch nicht beendet.	Installation überprüfen
27	Leerrohr (Dichte < DR3: empty_pipe_limit)	Dichte unterhalb des eingestellten Grenzwerts.	Messaufnehmer aufstocken oder Grenzwert anpassen
28	Volumendurchfluss außerhalb zulässigem Bereich	Überlauf in Volumendurchflussberechnung – möglich bei Dichte nahe Null.	Dichte prüfen
29	Nullpunkteinstellung über Grenzwert für Abweichung (Zero_sigma > DR3: zero_sigma_limit)	Werte für Nullpunkteinstellung über Grenzwert.	Prozess auf Nulldurchfluss prüfen
30	Nullpunkteinstellung über Grenzwert für Sigma (Zero_offset_value > DR3: zero_offset_limit)	Werte für Zero Sigma über Grenzwert.	Prozess auf Nulldurchfluss oder Fehler prüfen
31	Einstellwert Summenzähler	CRC Summenzählerwert in F-RAM falsch	Letzte Summenzählerwerte verloren gegangen. Summenzähler zurücksetzen oder Voreinstellungen angeben
32	FRAM Fehler	F-RAM Lese-/Schreibfehler	Messumformer austauschen
33	DRAM Fehler	D-RAM Lese-/Schreibfehler	Messumformer auswechseln
34	Anlauf verursacht durch Rücksetzen des Watchdogs	Ein Watchdog wurde in der Baugruppe rückgesetzt. Dieser Fehler wurde in dem durch das Zurücksetzen des Watchdogs verursachten Startvorgang auf 3 s eingestellt.	Firmware aktualisieren. SIFLOW-Hotline verständigen
35	Anlauf verursacht durch Programmcode-Fehler	Programmcode Prüfsummenfehler, unzulässige Programmausführung, oder fehlerhafte Hardware, Firmware oder falsche Parameter.	Firmware aktualisieren. SIFLOW-Hotline verständigen
36	Verlust Prozessalarm	Prozessalarm an der Schnittstelle S7/P-Bus verloren.	S7 CPU und S7 Bus prüfen. SIFLOW-Hotline verständigen

12.7 Fehlermeldungen der SIFLOW FC070

Nr.	Diagnosealarm	Wahrscheinliche Fehlerursache	Zur Korrektur oder Vermeidung von Fehlern
37	Parameterfehler	Prüfsumme der Baugruppendaten (Messumformerinformation) falsch.	SIFLOW-Hotline verständigen
38	Lifebit Überwachung S7 Time-Out	Zeitüberschreitung der SIMATIC CPU Lifebit Überwachung.	S7 CPU und S7 Bus überprüfen.
39	Modbus- Kommunikationsfehler	Kommunikationsfehler mit RS232/RS485	Kabel, Steckverbinder und - parameter für RS232/RS485 überprüfen
			"Rahmen", "Parität" und "Baudrate" überprüfen
40	Fehler der Spannungsversorgung des internen Moduls	Die Versorgungsspannung ist unter 14,5 V abgesunken.	Stromversorgung überprüfen

Beispiel: Bestätigen eingehender (C) und ausgehender (G) PE/SE Fehler

Fehler "PE Impulsüberlauf" (PE Fehlernummer 23) tritt auf, d.h. der Fehler geht ein.

- "ERR_MSG_C" = 97 hex = 1001 0111 bin und "ERR_MSG_TYPE" = 2.
- Dies zeigt an, dass Sie einen Prozessfehler (Typ = 2) mit Fehlernummer 23 (PE PE Impulsüberlauf) empfangen.
- Zum Lesen der Fehlernummer verwenden Sie die Nummer ohne das f
 ür den eingehenden Fehler eingestellte Bit d.h. "ERR_MSG_C" = 0001 0111 bin = 17 hex = 23 dezimal.

Fehler "PE Impulsüberlauf" ist nicht mehr aktiv, d.h. der Fehler geht aus.

- "ERR_MSG_C" bleibt auf 97 hex, solange er nicht bestätigt ist.
- Wenn der eingehende Fehler "PE Impulsüberlauf" bestätigt wurde ("ERR_MSG_Q" wurde gesetzt), wird der Fehlerstatus "ERR_MSG_C" von ein- auf ausgehend geändert (von 1001 0111 bin auf 0001 0111 bin).
- Wenn der ausgehende Fehler "PE Impulsüberlauf" bestätigt wurde, wird "ERR_MSG_C" von 17 hex (0001 0111 bin) auf nächsten unbestätigten Fehler oder auf 0 geändert, falls kein unbestätigter Fehler vorliegt.

12.7.3 Daten- und Betriebsfehler

Die SIMATIC Fehlerklasse aller Betriebsfehler ist "extern". Der Fehlerstatus ist dabei stets "EIN". Die Namur-Klasse lautet stets "S" (außerhalb der Spezifikation).

Hinweis

HE Fehler lösen keine LEDs aus

Code	Ereignis	nis Kurzbeschreibung, Erklärung		
1	HE_UNKNOWN_COMMAND	Fehlercode unbekannt	F9601101	
2	HE_UNKNOWN_DATA_RECORD	Datensatznummer unbekannt	F9601102	
3	HE_ZERO_ADJUST_ACTIVE	Nullpunkteinstellung läuft; während der Nullpunkteinstellung werden keine neuen Befehle oder Parameter akzeptiert.	F9601103	
4	HE_BATCH_ACTIVE	Batch-Vorgang läuft; während der Batch- Verarbeitung werden keine neuen Startbefehle oder Parameter akzeptiert.	F9601104	
5	HE_WRITE_PROTECTION_ACTIVE	Vorgang nicht zulässig bei aktivem Schreibschutz	F9601105	
6	HE_FACTORY_VALUES_LOADED	Werkseinstellungen werden geladen	F9601106	
7	HE_CMD_BUSY	Neuer Befehl nicht zulässig, da letzter Befehl noch aktiv ist.	F9601107	
8	HE_CMD_FREEZE_MODE	Der "Freeze"-Befehl (Einfrieren) ist nur möglich, wenn der Impuls- oder Frequenzmodus am digitalen Ausgang parametriert ist.	F9601108	
9	HE_CMD_FORCE_MODE	Der "Set"-Befehl (Einstellen) ist nur möglich, wenn der Impuls- oder Frequenzmodus am digitalen Ausgang parametriert ist.		
10	HE_OUTPUT_SIMULATION_ENABLED	N_ENABLED Keine Änderung der Ausgabeparameter (DR5 voll und DR11 Batch-Verarbeitungsparameter) bei aktiver Ausgabesimulation.		
11	HE_MODBUS_RESPONSE_TIMEOUT Keine MODBUS-Antwort innerhalb der Reaktionszeit möglich.		F960110B	
12	HE_NEW_CODE_LOADED Firmware einer neuen Anwendung wird geladen.		F960110C	
13	HE_13	Frei, kein gültiger HE.	F960110D	
14	HE_14	Frei, kein gültiger HE.	F960110E	
15	HE_15	Frei, kein gültiger HE.	F960110F	
16	HE_NOT_WRITEABLE_IF_SPROM_MOUN TED	Parameter kann nicht geschrieben werden, wenn ein SENSORPROM installiert ist (messaufnehmerspezifische Daten).	F9601110	
17	HE_DBS_UNKNOWN_DATA_RECORD	Das Gerät hat von S7-CPU oder MODBUS einen Datensatz mit einer unbekannten Zahl erhalten.	F9601111	
18	HE_18	Frei, kein gültiger HE.	F9601112	
19	HE_19	Frei, kein gültiger HE.	F9601113	
20	HE_20	Frei, kein gültiger HE.	F9601114	
21	HE_FLASHING	Fehler beim Programmieren oder Löschen des FLASH.	F9601115	
22	HE_22	Frei, kein gültiger HE.	F9601116	
23	HE_FLOW_UNKNOWN_DATA	Nicht verwendet	F9601117	
24	HE_FLOW_UNKNOWN_DR_NUMBER	Gerät empfängt einen Datensatz mit einer unbekannten Nummer.	F9601118	
25	HE 25	Frei, kein gültiger HE.	F9601119	

Tabelle 12-7 Daten- und Betriebsfehler

Code	Ereignis	S7 Ereignis ID (HEX)	
26	HE_FLOW_TOTALIZER_HELD	Summenzähler wurde bereits angehalten.	F960111A
27	HE_FLOW_TOTALIZER_RUNNING	Summenzähler ist bereits aktiv.	F960111B
28	HE_FLOW_BATCH_NOT_PARAMETRIZED	Kein Batch parametriert: Batch- Verarbeitungsbefehl nicht zulässig	F960111C
29	HE_FLOW_BATCH_IDLE Batch-Verarbeitung im Leerlauf: Befehl nicht zulässig (in diesem Fall ist nur ein Befehl zum Starten des Batch-Vorgangs zulässig)		F960111D
30	HE_30	Frei, kein gültiger HE.	F960111E
31	HE_FLOW_BATCH_HELD Batch-Verarbeitung angehalten: Befehl nicht zulässig (in diesem Fall ist nur ein Befehl zum Fortsetzen oder Beenden des Batch-Vorgangs zulässig)		F960111F
32	HE_FLOW_NOT_READY	Gerätestart: während den ersten 40 s nach einem Neustart wird kein Befehl akzeptiert	F9601120
33	HE_FLOW_ERROR	Nicht verwendet	F9601121
34	HE_FLOW_DATA_CHECK_FAILED	Nicht verwendet	F9601122
35	HE_FLOW_DATA_EMPTY_PIPE_DETECTI ON	DR3: empty_pipe_detection_on_off außerhalb des zulässigen Bereichs	F9601123
36	HE_FLOW_DATA_EMPTY_PIPE_LIMIT DR3: empty_pipe_limit außerhalb des zulässigen Bereichs		F9601124
37	HE_FLOW_DATA_LOW_FLOW_CUT_OFF DR3: low_flow_cut_off außerhalb des zulässigen Bereichs		F9601125
38	HE_FLOW_DATA_FLOW_DIRECTION DR3: flow_direction außerhalb des zulässigen Bereichs		F9601126
39	HE_FLOW_DATA_NOISE_FILTER DR3: noise_filter außerhalb des zulässigen Bereichs		F9601127
40	HE_FLOW_DATA_ERROR_LEVEL	DR3: error_level außerhalb des zulässigen Bereichs	F9601128
41	HE_FLOW_DATA_MASSFLOW_MAX	DR3: massflow_max außerhalb des zulässigen Bereichs	F9601129
42	HE_FLOW_DATA_VOLUMEFLOW_MAX	DR3: volumeflow_max außerhalb des zulässigen Bereichs	F960112A
43	HE_FLOW_DATA_DENSITY_MAX	DR3: density_max außerhalb des zulässigen Bereichs	F960112B
44	HE_FLOW_DATA_SENSOR_TEMP_MAX	DR3: sensor_temperature_max außerhalb des zulässigen Bereichs	F960112C
45	HE_FLOW_DATA_FRACTION_A_FLOW_M AX	DR3: fraction_A_flow_max außerhalb des zulässigen Bereichs	F960112D
46	HE_FLOW_DATA_FRACTION_B_FLOW_M AX	DR3: fraction_B_flow_max außerhalb des zulässigen Bereichs	F960112E
47	HE_FLOW_DATA_PERCENT_FRACTION_ A_MAX	DR3: percent_fraction_A_max außerhalb des zulässigen Bereichs	F960112F
48	HE_FLOW_DATA_MASSFLOW_MIN DR3: massflow_min außerhalb des zulässigen Bereichs		F9601130
49	HE_FLOW_DATA_VOLUMEFLOW_MIN	DR3: volumeflow_min außerhalb des zulässigen Bereichs	F9601131

Code	Ereignis	Kurzbeschreibung, Erklärung		
50	HE_FLOW_DATA_DENSITY_MIN	DR3: density_min außerhalb des zulässigen Bereichs	F9601132	
51	HE_FLOW_DATA_SENSOR_TEMP_MIN	DR3: sensor_temperature_min außerhalb des zulässigen Bereichs	F9601133	
52	HE_FLOW_DATA_FRACTION_A_FLOW_MI N	DR3: fraction_A_flow_min außerhalb des zulässigen Bereichs	F9601134	
53	HE_FLOW_DATA_FRACTION_B_FLOW_MI N	DR3: fraction_B_flow_min außerhalb des zulässigen Bereichs	F9601135	
54	HE_FLOW_DATA_PERCENT_FRACTION_ A_MIN	DR3: percent_fraction_A_min außerhalb des zulässigen Bereichs	F9601136	
55	HE_FLOW_DATA_ZERO_ADJUST_TIME	DR3: zero_adjust_time außerhalb des zulässigen Bereichs	F9601137	
56	HE_FLOW_DATA_ZERO_SIGMA_LIMIT	DR3: zero_sigma_limit außerhalb des zulässigen Bereichs	F9601138	
57	HE_FLOW_DATA_ZERO_OFFSET_LIMIT	DR3: zero_offset_limit außerhalb des zulässigen Bereichs	F9601139	
58	HE_FLOW_DATA_TOTALIZER_1_SELECTI ON	DR4: totalizer_1_selection außerhalb des zulässigen Bereichs	F960113A	
59	HE_FLOW_DATA_TOTALIZER_2_SELECTI ON	SELECTI DR4: totalizer_2_selection außerhalb des zulässigen Bereichs		
60	HE_FLOW_DATA_TOTALIZER_1_DIRECTI ON	DATA_TOTALIZER_1_DIRECTI DR4: totalizer_1_direction außerhalb des zulässigen Bereichs		
61	HE_FLOW_DATA_TOTALIZER_2_DIRECTI ON	DR4: totalizer_2_direction außerhalb des zulässigen Bereichs	F960113D	
62	HE_FLOW_DATA_TOTALIZER_1_FAIL_MO DE	ZER_1_FAIL_MO DR4: totalizer_1_fail_mode außerhalb des zulässigen Bereichs		
63	HE_FLOW_DATA_TOTALIZER_2_FAIL_MO DE	DR4: totalizer_2_fail_mode außerhalb des zulässigen Bereichs	F960113F	
64	HE_FLOW_DATA_DIG_OUT_SF_REACTIO N	DR5: digital_output_sf_reaction außerhalb des zulässigen Bereichs	F9601140	
65	HE_FLOW_DATA_DIG_OUT_FUNCTION	DR5: digital_output_function außerhalb des zulässigen Bereichs	F9601141	
66	HE_FLOW_DATA_PULSE_VALUE_SELEC TION	DR5: pulse_value_selection außerhalb des zulässigen Bereichs	F9601142	
67	HE_FLOW_DATA_PULSE_OUT_POLARITY	DR5: pulse_output_polarity außerhalb des zulässigen Bereichs	F9601143	
68	HE_FLOW_DATA_PULSE_DIRECTION	DR5: pulse_direction außerhalb des zulässigen Bereichs	F9601144	
69	HE_FLOW_DATA_PULSE_WIDTH	DR5: pulse_width außerhalb des zulässigen F9601145 Bereichs		
70	HE_FLOW_DATA_PULSE_AMOUNT	DR5: pulse_mass_or_volume_amount außerhalb des zulässigen Bereichs	F9601146	
71	HE_FLOW_DATA_FREQ_VALUE_SELECTI ON	DR5: frequency_value_selection außerhalb des zulässigen Bereichs	F9601147	
72	HE_FLOW_DATA_FREQ_DIRECTION	DR5: frequency_direction außerhalb des zulässigen Bereichs	F9601148	

Code	Ereignis	S7 Ereignis ID (HEX)	
73	HE_FLOW_DATA_FREQ_MAX	DR5: frequency_max außerhalb des zulässigen Bereichs	F9601149
74	HE_FLOW_DATA_FREQ_TIME_CONSTAN T	HE_FLOW_DATA_FREQ_TIME_CONSTANDR5: frequency_time_constant außerhalb desTzulässigen Bereichs	
75	HE_FLOW_DATA_BATCH_VALUE_SELEC TION	DR5: batch_value_selection außerhalb des zulässigen Bereichs	F960114B
76	HE_FLOW_DATA_BATCH_COUNTER_DIR ECTION	DR5: batch_counter_up_down außerhalb des zulässigen Bereichs	F960114C
77	HE_FLOW_DATA_BATCH_OUT_POLARIT Y	DR5: batch_output_polarity außerhalb des zulässigen Bereichs	F960114D
78	HE_FLOW_DATA_BATCH_TIME_ERROR_ ON_OFF	DR5: batch_time_error_on_off außerhalb des zulässigen Bereichs	F960114E
79	HE_FLOW_DATA_BATCH_OVERRUN_ER ROR_ON_OFF	DR5: batch_overrun_on_off außerhalb des zulässigen Bereichs	F960114F
80	HE_FLOW_DATA_BATCH_TIME_MAX	DR5: batch_time_max außerhalb des zulässigen Bereichs	F9601150
81	HE_FLOW_DATA_BATCH_OVERRUN_QU DR5: batch_overrun_error_quantity außerhalb ANTITY des zulässigen Bereichs		F9601151
82	HE_FLOW_DATA_DIG_IN_SF_REACTION DR6: digital_input_sf_reaction außerhalb des zulässigen Bereichs		F9601152
83	HE_FLOW_DATA_INPUT_FILTER_TIME DR6: digital_input_filter_time außerhalb des zulässigen Bereichs		F9601153
84	HE_FLOW_DATA_DIG_IN_INVERSION DR6: digital_input_inversion außerhalb des zulässigen Bereichs		F9601154
85	HE_FLOW_DATA_FREQ_FORCE_OUT_VA L DR6: force_frequency_output_value außerhalb des zulässigen Bereichs		F9601155
86	HE_FLOW_DATA_DIG_IN_FUNCTION	W_DATA_DIG_IN_FUNCTION W_DATA_DIG_IN_FUNCTION Einstellen der Digitaleingangsfunktion außerhalb des zulässigen Bereichs DR6: digital_input_function außerhalb des zulässigen Bereichs	
87	HE_FLOW_DATA_SENSOR_SIZE	DR9: sensor_size außerhalb des zulässigen Bereichs	F9601157
88	HE_FLOW_DATA_CALIBRATION_FACTOR	DR9: calibration_factor außerhalb des zulässigen Bereichs	F9601158
89	HE_FLOW_DATA_CORRECTION_FACTOR	DR9: correction_factor außerhalb des zulässigen Bereichs	F9601159
90	HE_FLOW_DATA_SENSOR_TC	DR9: sensor_TC außerhalb des zulässigen Bereichs	F960115A
91	HE_FLOW_DATA_DENSITY_PARM_A	DR9: density_parm_A außerhalb des zulässigen Bereichs	F960115B
92	HE_FLOW_DATA_DENSITY_PARM_B	DR9: density_parm_B außerhalb des zulässigen Bereichs	F960115C
93	HE_FLOW_DATA_DENSITY_TC DR9: density_TC außerhalb des zulässigen Bereichs		F960115D
94	HE_FLOW_DATA_DENSITY_OFFSET	DR9: density_offset außerhalb des zulässigen Bereichs	F960115E

Code	Ereignis	Kurzbeschreibung, Erklärung			
95	HE_FLOW_DATA_DENSITY_FACTOR	DR9: density_factor außerhalb des zulässigen Bereichs	F960115F		
96	HE_FLOW_DATA_FRACTION_OFFSET	DR9: fraction_factor außerhalb des zulässigen Bereichs	F9601160		
97	HE_FLOW_DATA_FRACTION_FACTOR	DR9: fraction_offset außerhalb des zulässigen Bereichs	F9601161		
98	HE_FLOW_DATA_SIM_VAL_MASSFLOW	DR10: simulation_value_massflow außerhalb des zulässigen Bereichs	F9601162		
99	HE_FLOW_DATA_SIM_VAL_VOLUMEFLO W	DR10: simulation_value_volumeflow außerhalb des zulässigen Bereichs	F9601163		
100	HE_FLOW_DATA_SIM_VAL_DENSITY	DR10: simulation_value_density außerhalb des zulässigen Bereichs	F9601164		
101	HE_FLOW_DATA_SIM_VAL_SENSOR_TE	DR10: simulation_value_sensor_temperature außerhalb des zulässigen Bereichs	F9601165		
102	HE_FLOW_DATA_SIM_VAL_PERCENT_FR DR10: simulation_value_percent_fraction_a außerhalb des zulässigen Bereichs		F9601166		
103	HE_FLOW_DATA_SIM_VAL_OUTPUT_1 DR10: simulation_value_output_1 außerhalb des zulässigen Bereichs		F9601167		
104	HE_FLOW_DATA_SIM_VAL_OUTPUT_1_F REQ DR10: simulation_value_output_1_frequency außerhalb des zulässigen Bereichs		F9601168		
105	HE_FLOW_DATA_SIM_VAL_OUTPUT_2 DR10: simulation_value_output_2 außerhalb des zulässigen Bereichs		F9601169		
106	HE_FLOW_DATA_SIM_VAL_OUTPUT_2_F DR10: simulation_value_output_2_frequency REQ außerhalb des zulässigen Bereichs		F960116A		
107	HE_FLOW_DATA_SIM_VAL_INPUT DR10: simulation_value_input außerhalb des zulässigen Bereichs		F960116B		
108	HE_FLOW_DATA_SIM_VAL_ERROR_NO	DR10: simulation_value_error_no außerhalb des zulässigen Bereichs	F960116C		
109	HE_FLOW_DATA_BATCH_QUANTITY	DR11: batch_compensation außerhalb des zulässigen Bereichs	F960116D		
110	HE_FLOW_DATA_BATCH_COMPENSATIO	DR11: batch_quantity außerhalb des zulässigen Bereichs	F960116E		
111	HE_FLOW_DATA_BATCH_LEAD_CONSTA NT	DR11: batch_lead_constant außerhalb des zulässigen Bereichs	F960116F		
112	HE_FLOW_DATA_BATCH_TWO_STAGE_L EVEL	DR11: batch_two_stage_level außerhalb des zulässigen Bereichs	F9601170		
113	HE_FLOW_DATA_TOTALIZER_1_PRESET _VAL	DR11: totalizer_1_preset_value außerhalb des zulässigen Bereichs	F9601171		
114	HE_FLOW_DATA_TOTALIZER_2_PRESET _VAL	DR11: totalizer_2_preset_value außerhalb des zulässigen Bereichs	F9601172		
115	HE_FLOW_DATA_ZERO_OFFSET_PRESE T_VAL	FSET_PRESE DR11: zero_offset_preset_value außerhalb des zulässigen Bereichs			
116	HE_FLOW_DATA_LIMIT_1_SELECTION	E_FLOW_DATA_LIMIT_1_SELECTION DR12: limit1_selection außerhalb des zulässigen Bereichs			
117	HE_FLOW_DATA_LIMIT_1_DIRECTION	DR12: limit1_direction außerhalb des zulässigen Bereichs	F9601175		

Code	Ereignis	Kurzbeschreibung, Erklärung	S7 Ereignis ID (HEX)
118	HE_FLOW_DATA_LIMIT_1_SETPOINT	DR12: limit1_setpoint außerhalb des zulässigen Bereichs	F9601176
119	HE_FLOW_DATA_LIMIT_1_HYSTERESIS	DR12: limit1_hysteresis außerhalb des zulässigen Bereichs	F9601177
120	HE_FLOW_DATA_LIMIT_2_SELECTION	DR12: limit2_selection außerhalb des zulässigen Bereichs	F9601178
121	HE_FLOW_DATA_LIMIT_2_DIRECTION	DR12: limit2_direction außerhalb des zulässigen Bereichs	F9601179
122	HE_FLOW_DATA_LIMIT_2_SETPOINT	DR12: limit2_setpoint außerhalb des zulässigen Bereichs	F960117A
123	HE_FLOW_DATA_LIMIT_2_HYSTERESIS	DR12: limit2_hysteresis außerhalb des zulässigen Bereichs	F960117B
124	HE_FLOW_DATA_LIMIT_3_SELECTION	DR12: limit3_selection außerhalb des zulässigen Bereichs	F960117C
125	HE_FLOW_DATA_LIMIT_3_DIRECTION	DR12: limit3_direction außerhalb des zulässigen Bereichs	F960117D
126	HE_FLOW_DATA_LIMIT_3_SETPOINT	DR12: limit3_setpoint außerhalb des zulässigen Bereichs	F960117E
127	HE_FLOW_DATA_LIMIT_3_HYSTERESIS	DR12: limit3_hysteresis außerhalb des zulässigen Bereichs	F960117F
128	HE_FLOW_DATA_LIMIT_4_SELECTION	DR12: limit4_selection außerhalb des zulässigen Bereichs	F9601180
129	HE_FLOW_DATA_LIMIT_4_DIRECTION	DR12: limit4_direction außerhalb des zulässigen Bereichs	F9601181
130	HE_FLOW_DATA_LIMIT_4_SETPOINT	DR12: limit4_setpoint außerhalb des zulässigen Bereichs	F9601182
131	HE_FLOW_DATA_LIMIT_4_HYSTERESIS	DR12: limit4_hysteresis außerhalb des zulässigen Bereichs	F9601183
132	HE_FLOW_DEVICE_ADDRESS	DR0: device_address	F9601184
133	HE_133	Frei, kein gültiger HE.	F9601185
134	HE_134	Frei, kein gültiger HE.	F9601186
135	HE_FLOW_DATA_STANDALONE	DR7: Standalone außerhalb des zulässigen Bereichs	F9601187
136	HE_FLOW_DATA_OUTPUT_VAR1_ASS	DR7: s7_peri_output_var_1_assignment außerhalb des zulässigen Bereichs	F9601188
137	HE_FLOW_DATA_OUTPUT_VAR2_ASS	DR7: s7_peri_output_var_2_assignment außerhalb des zulässigen Bereichs	F9601189
138	HE_FLOW_DATA_PRAL0_ASSIGNMENT	DR7: s7_pral0_assignment ungültig	F960118A
139	HE_FLOW_DATA_PRAL1_ASSIGNMENT	DR7: s7_pral1_assignment ungültig	F960118B
140	HE_FLOW_DATA_PRAL2_ASSIGNMENT	DR7: s7_pral2_assignment ungültig	F960118C
141	HE_FLOW_DATA_PRAL3_ASSIGNMENT	DR7: s7_pral3_assignment ungültig	F960118D
142	HE_FLOW_DATA_PRAL4_ASSIGNMENT	DR7: s7_pral4_assignment ungültig	F960118E
143	HE_FLOW_DATA_PRAL5_ASSIGNMENT	DR7: s7_pral5_assignment ungültig	F960118F
144	HE_FLOW_DATA_PRAL6_ASSIGNMENT	DR7: s7_pral6_assignment ungültig	F9601190
145	HE_FLOW_DATA_PRAL7_ASSIGNMENT	DR7: s7_pral7_assignment ungültig	F9601191

12.7 Fehlermeldungen der SIFLOW FC070

Code	Ereignis	Kurzbeschreibung, Erklärung	S7 Ereignis ID (HEX)
146	HE_FLOW_DATA_MODBUS_BAUDRATE	DR7: modbus_baudrate außerhalb des zulässigen Bereichs	F9601192
147	HE_FLOW_DATA_MODBUS_PAR_FRAMIN G	DR7: modbus_parity_framing außerhalb des zulässigen Bereichs	F9601193
148	HE_FLOW_DATA_MODBUS_RESP_TIMEO UT	DR7: modbus_response_timeout außerhalb des zulässigen Bereichs	F9601194
149	HE_FLOW_DATA_MODBUS_RESP_DELA Y	DR7: modbus_response_delay außerhalb des zulässigen Bereichs	F9601195
150	HE_FLOW_DATA_MODBUS_INTER_FRAM DR7: modbus_inter_frame_space außerhalb des zulässigen Bereichs		F9601196
151	HE_FLOW_DATA_TIME Einstellung von Datum oder Uhrzeit außerhalb des zulässigen Bereichs. Korrigieren Sie Ihre Werte § für Datum und Uhrzeit		Jahr:
152	HE_FLOW_DATA_CT_PV1_ID DR39: process_value_1_ID außerhalb des zulässigen Bereichs		F9601198
153	HE_FLOW_DATA_CT_PV2_ID	CT_PV2_ID DR39: process_value_2_ID außerhalb des f zulässigen Bereichs	
249	Reserviert		
250	HE_PERI_700_VARS	HE_PERI_700_VARS Fehler beim Transfer von S7 Steuersignalen Bytes 2 bis 15 wenn über Befehl 700	
251	HE_PERI_701_IN_VAR_ADDR Bytes 2, 3 wenn über Befehl 701		F96011FB
252	HE_PERI_701_IN_VAR_VALUE	/AR_VALUE Fehler beim Transfer von S7 Steuersignalen F Bytes 4, 5 wenn über Befehl 701	
253	HE_PERI_702_DIGITAL_OUTPUT	L_OUTPUT Fehler beim Transfer von S7 Steuersignalen F96 Bytes 8, 9 wenn über Befehl 702	
254	HE_PERI_703_OUT_VAR1_ADDR	HE_PERI_703_OUT_VAR1_ADDR Fehler beim Transfer von S7 Steuersignalen Bytes 12, 13 wenn über Befehl 703	
255	HE_PERI_704_OUT_VAR2_ADDR Fehler beim Transfer von S7 Steuersignalen Bytes 14, 15 wenn über Befehl 704		F96011FF

12.7.4 Fehlerinformation im Ausgangsparameter ERR_MSG_C oder CMD_ERR_C

Die Fehlercodenummer (CMD_ERR_C) ist der Ausgang für Befehle, die nicht ausgeführt werden (mit Fehler beendet). Die Bestandteile der angegebenen Nummer werden in der Tabelle "Daten- und Bedienfehler" (Seite 162) erläutert. Der Wert bleibt im Ausgang, bis der nächste Befehl ausgelöst wird.

Messaufnehmerfehlercodes (SE) 1–40, Prozessfehlercodes (PE) 1-40 sowie Daten- und Betriebsfehlercodes werden in oben stehenden Tabellen beschrieben. Die Fehlercodes 250-255 sind allen Fehlertypen gemeinsame Fehlercodes und werden in folgender Tabelle beschrieben:

12.8 Systemstatusinformationen

Fehlercode	Beschreibung
250	Gruppenfehler: Mindestens ein Fehler ist in den über die E/A-Schnittstelle gesendeten Werten vorhanden. Keiner der Werte wurde von der Funktionsbaugruppe importiert (Fehlerreaktion auf Befehl 700)
251	Adressenfehler in VAR_ADR, Adresse wurde nicht von der Funktionsbaugruppe importiert (Fehlerreaktion auf Befehl 701)
252	Ausgangswert VAR_VAL ist ungültig und wurde nicht von der Funktionsbaugruppe importiert (Fehlerreaktion auf Befehl 701)
253	Ausgangswert von DIG_OUT ist ungültig und wurde nicht von der Funktionsbaugruppe importiert (Fehlerreaktion auf Befehl 702)
254	Adressenfehler in VAR1_ADR, Adresse wurde nicht von der Funktionsbaugruppe importiert (Fehlerreaktion auf Befehl 703)
255	Adressenfehler in VAR2_ADR, Adresse wurde nicht von der Funktionsbaugruppe importiert (Fehlerreaktion auf Befehl 704)

Tabelle 12-8 Fehlerinformation von Funktionsbaustein SIFL_FC

12.8 Systemstatusinformationen

Systemstatusinformationen sind keine Meldungen. Sie beschreiben den Zustand der Funktionsbaugruppe im Normalbetrieb und können jederzeit beobachtet bzw. ausgewertet werden.

Folgende Tabelle beschreibt den Systemzustand (SC_STATUS) und wie die Statusbytes in S7 einer Doppelvariable (in diesem Beispiel MD52) zugeordnet sind.

Beispiel

Beim Lesen der Statusinformationen an MD52 wird folgender Wert angezeigt: 01001020Hex oder 00000001-00000000-00010000-00100000 binär. Dies steht für folgenden Gerätestatus:

- ST_BATCHING (M55.0)
- ST_SIMULATION_ACTIVE (M53.4)
- ST_SENSOR_ERROR (M52.5)

12.8 Systemstatusinformationen

Bit	MD52 Beispiel		Name	Erklärung und Wertebereich
0	M55.0	MB55	ST_BATCHING	1 = Batch aktiv
1	M55.1		ST_BATCH_HELD	1 = Batch angehalten (Pause)
2	M55.2		ST_BATCH_STOPPED	1 = Batch gestoppt (letzter Batch nicht beendet)
3	M55.3		ST_BATCH_TWO_STAGE_REA CHED	1 = Zweistufenwert erreicht
4	M55.4		Reserviert	-
5	M55.5		Reserviert	-
6	M55.6		ST_TOTALIZER1_HELD	1 = Summenzähler 1 angehalten
7	M55.7		ST_TOTALIZER2_HELD	1 = Summenzähler 2 angehalten
8	M54.0	MB54	ST_ZERO_ADJUST_OFFSET_LI MIT_EXCEEDED	1 = Wert über Offset Limit der Nullpunkteinstellung
9	M54.1		ST_ZERO_ADJUST_IN_PROGR ESS	1 = Nullpunktabgleich aktiv
10	M54.2		ST_LIMIT_1	1 = Wert über oder unter Sollwert 1 entsprechend DR12: limit1_direction
11	M54.3		ST_LIMIT_2	1 = Wert über oder unter Sollwert 2 entsprechend DR12: limit2_direction
12	M54.4		ST_LIMIT_3	1 = Wert über oder unter Sollwert 3 entsprechend DR12: limit3_direction
13	M54.5		ST_LIMIT_4	1 = Wert über oder unter dem Sollwert 4 gemäß DR12: limit4_direction
14	M54.6		Reserviert	-
15	M54.7		Reserviert	-

Tabelle 12-9 Systemstatusinformationen

12.9 Slave-Diagnose

Bit	MD52 Beispiel		Name	Erklärung und Wertebereich
16	M53.0	MB53	ST_CT_MODE	1 = CT-Modus aktiv
17	M53.1		ST_DIGITAL_INPUT_STATE	1 = hoch; 0 = niedrig
18	M53.2		ST_FACTORY_VALUES_LOAD ED	1 = Werkseinstellungen sind vollständig geladen (Bit wird zurückgesetzt, wenn der erste Wert geändert wird)
19	M53.3		ST_WRITE_PROTECTION_ACTI	1 = Schreibschutz aktiviert (Download der Firmware nicht möglich)
20	M53.4		ST_SIMULATION_ACTIVE	1 = Mindestens ein Prozesswert wird simuliert (die simulierten Werte sind in DR10 verfügbar)
21	M53.5		Reserviert	-
22	M53.6		ST_OUTPUT_VALUE_FORCED	AUSGANG 1 ist eingestellt
23	M53.7		ST_OUTPUT_VALUE_FROZEN	AUSGANG 1 ist eingefroren
24	M52.0	MB52	Reserviert	-
25	M52.1		Reserviert	-
26	M52.2		ST_DATE_AND_TIME_NOT_SY NC	1 = Datum und Uhrzeit nicht bei Inbetriebnahme eingestellt oder nicht innerhalb von 180 Sekunden über DR8 synchronisiert
27	M52.3		ST_PARAMETER_CHANGED_B Y_S7	Eingestellt, wenn SIMATIC Parameter geändert wurden (Rücksetzen nach dem Befehl CMD_PARA_CHANGE_ACK von MODBUS)
28	M52.4		ST_PARAMETER_CHANGED_B Y_MODBUS	Eingestellt, wenn MODBUS Parameter geändert wurden (Rücksetzen nach dem Befehl CMD_PARA_CHANGE_ACK von S7)
29	M52.5		ST_SENSOR_ERROR	Sensorfehler (SE LED)
30	M52.6		ST_PROCESS_ERROR	Prozessfehler (PE LED)
31	M52.7		ST_SF	1 = Baustein fehlerhaft (SF = Sammelfehler/Summenbit für Sensor- und Prozessfehler); SF LED

12.9 Slave-Diagnose

Die IM 153-x liefert Slave-Diagnose in Übereinstimmung mit dem Standard IEC 61784-1:2002 Ed1 CP 3/1.

Hinweis

Die Struktur der Diagnosedaten bei Slave-Diagnose wird in der Betriebsanleitung für das dezentrale E/A-System ET 200M detailgenau beschrieben. Unten stehend werden nur allgemeine Informationen geliefert.

Informationen zu "erweiterter Diagnose" des ET 200M

Um die kanalspezifischen Diagnosen zu benutzen, müssen Sie die Diagnosealarme für jede E/A-Baugruppe der Konfiguration aktivieren.

12.9 Slave-Diagnose

Beim Konfigurieren der IM 153-x können Sie Diagnosealarme, Prozessalarme und Hot-Swapping-Alarme aktivieren oder blockieren und zwar unabhängig von der Aktivierung "erweiterter Diagnose".

Über den Parameter DP V1 (ab GSD Revision 3) können Sie die einzelnen Bausteine der erweiterten Diagnose blockieren oder aktivieren. Blockierte Diagnosen werden aus dem Diagnoserahmen entfernt.

Um Kanalfehler aus dem Diagnoserahmen zu entfernen, müssen Sie die "erweiterte Diagnose" in der Konfiguration ausschalten.

ACHTUNG

Wenn Sie "erweiterte Diagnose" während der Konfiguration aktiviert haben und ein Diagnosealarm für eine Baugruppe nur ausgelöst wird wenn ET 200M läuft, so wird nicht sofort ein Kanalfehler in den Diagnoserahmen eingegeben. Ein Kanalfehler wird nur nach der Auslösung des ersten Diagnosealarms der nach der Aktivierung erstellten Baugruppe in den Diagnoserahmen eingegeben.

Hinweis

Beachten Sie die Unterschiede im Diagnoserahmen je nach Version der IM 153-x und der Ausführungsversion. Mit IM 153-2Bx00 und IM 153-2Bxx1 ist die erweiterte Diagnose standardmäßig im Modus DP V0 / DP V1 verfügbar. Sie kann während der Konfiguration in den Bausteinen abgewählt (ausgeschaltet) werden.

Alarme

Der Alarmteil der Slave-Diagnose liefert Informationen zu Alarmtyp und -ursache, die zur Auslösung der Slave-Diagnose führten.

ET 200M unterstützt folgende Alarme:

- Diagnosealarm
- Prozessalarm
- Hot-Swapping-Alarm

Diese Alarme können mithilfe eines S7 / M7 DP Masters oder DP V1 Masters bewertet werden. Im Falle eines Alarms werden im Master CPU automatisch Alarm-OBs ausgeführt.

Der Alarmteil umfasst maximal 29 Bytes. Maximal 1 Alarm kann für jede Slave-Diagnose gemeldet werden.

12.9 Slave-Diagnose

Position im Diagnoserahmen

Die Position des Alarmteils in der Slave-Diagnose hängt von der Konfiguration des Diagnoserahmens und der Anzahl kanalspezifischer Diagnosen ab. Der Alarmteil ist stets der letzte Teil im Diagnoserahmen.

- Die Bytes x bis x+3 informieren Sie über den Alarmtyp.
- Die Bytes x+4 bis x+7 informieren Sie über die Alarmursache. Sie entsprechen dem Diagnosedatensatz 0 in S7.
- Die Bytes x+4 bis x+7 und x+8 bis x+19 entsprechen dem Diagnosedatensatz 1 in S7.

Alarme mit einem anderen DP Master

Wenn ET 200M mit einem anderen DP Master betrieben wird, werden diese Alarme als gerätebezogene Diagnosen von ET 200M abgebildet. Sie müssen die Bearbeitung der jeweiligen Diagnoseereignisse im Anwenderprogramm des DP Masters fortsetzen.

Referenzen

Die Struktur der Diagnosedaten für Slave-Diagnose werden detailgenau in der

Betriebsanleitung für ET 200M dezentrales E/A-System beschrieben (http://support.automation.siemens.com/WW/view/en/1142798/0/de)

13

Instandhaltung und Wartung

Unter idealen Bedingungen arbeitet das Durchflussmessgerät kontinuierlich, ohne dass manuelle Einstellung oder manueller Eingriff erforderlich ist.

13.1 Wartung

Das Gerät ist wartungsfrei. Gemäß den einschlägigen Richtlinien und Vorschriften müssen jedoch in regelmäßigen Abständen Prüfungen erfolgen.

Hierbei können folgende Punkte geprüft werden:

- Umgebungsbedingungen
- Unversehrtheit der Dichtung der Prozessanschlüsse, Kabeleinführungen und Schrauben der Abdeckung
- Zuverlässigkeit der Spannungsversorgung, des Blitzschutzes und der Erdung

13.2 Gerätereparatur

ACHTUNG

Reparatur- und Servicearbeiten dürfen nur durch von Siemens autorisiertem Personal durchgeführt werden.

Hinweis

Siemens definiert Messaufnehmer als nicht reparierbare Produkte.

13.3 Technischer Support

13.3 Technischer Support

Wenn Sie technische Fragen zu dem in dieser Betriebsanleitung beschriebenen Gerät haben, aber keine passende Antwort finden, steht Ihnen der Kunden-Support zur Verfügung:

- Über Internet mithilfe der Support-Anfrage: Support-Anfrage (http://www.siemens.com/automation/support-request)
- Über Telefon:
 - Europa: +49 (0)911 895 7222
 - Amerika: +1 423 262 5710
 - Asien/Pazifik: +86 10 6475 7575

Weitere Informationen zu unserem technischen Support erhalten Sie im Internet unter Technischer Support (http://support.automation.siemens.com/WW/view/de/16604318)

Service & Support im Internet

Neben unserer Dokumentation stellen wir unsere umfangreiche Wissensdatenbank online im Internet zur Verfügung:

Service und Support (http://www.siemens.com/automation/service&support)

Dort finden Sie Folgendes:

- Die neuesten Produktinformationen, FAQs, Downloads, Tipps und Tricks.
- Unser Newsletter mit aktuellen Informationen zu Ihren Produkten.
- Unser elektronisches schwarzes Brett, wo Benutzer und Spezialisten ihr Wissen weltweit zur gemeinsamen Nutzung mitteilen.
- In unserer Partnerdatenbank können Sie Ihren lokalen Kontaktpartner für Industrieautomation und Antriebstechnologien finden.
- Informationen über Vor-Ort-Service, Reparaturen, Ersatzteile und vieles mehr steht für Sie unter der Rubrik "Leistungen" bereit.

Weitere Unterstützung

Bitte wenden Sie sich an Ihre örtlichen Siemens Ansprechpartner und Vertretungen, wenn Sie zusätzliche Fragen zu dem Gerät haben.

Finden Sie Ihre Kontaktperson unter:

Örtlicher Ansprechpartner (http://www.automation.siemens.com/partner)

13.4 Rücksendeverfahren

Legen Sie den Lieferschein, den Begleitschein für die Rücksendung und die Dekontaminierungserklärung in eine Klarsichthülle und befestigen Sie diese gut außen an der Verpackung.

Erforderliche Formulare

- Lieferschein
- Deckungsbestätigung zur Rücksendung mit folgenden Informationen

Begleitschein (http://support.automation.siemens.com/WW/view/de/16604370)

- Produkt (Bestellnummer)
- Menge zurückgesendeter Geräte oder Ersatzteile
- Grund der Rücksendung

Dekontaminierungserklärung

Dekontaminierungserklärung (<u>http://pia.khe.siemens.com/efiles/feldg/files/Service/declaration_of_decontamination_en.</u> pdf)

Mit dieser Erklärung versichern Sie, dass die zurückgesendeten Produkte/Ersatzteile sorgfältig gereinigt wurden und frei von Rückständen sind.

Wurde das Gerät mit giftigen, ätzenden, entflammbaren oder Wasser gefährdenden Produkten verwendet, muss es vor dem Rücksenden durch Abspülen oder Neutralisieren gereinigt werden. Sicherstellen, dass alle Aushöhlungen frei von gefährlichen Substanzen sind. Danach das Gerät doppelt prüfen, um sicherzustellen, dass die Reinigung abgeschlossen ist.

Wir nehmen nur Kundendienst an Geräten oder Ersatzteilen vor, deren ordnungsgemäße Dekontaminierung durch die Dekontaminierungserklärung bestätigt wurde. Lieferungen ohne Dekontaminierungserklärung werden vor der weiteren Behandlung auf Ihre Kosten professionell gereinigt.

Die Formulare finden Sie im Internet und auf der mit dem Gerät ausgelieferten CD.

Instandhaltung und Wartung

13.4 Rücksendeverfahren

14

Diagnose und Fehlerbehebung

14.1 LED Statusanzeige

SIFLOW FC070 besitzt 12 LEDs, die den Status der Funktionsbaugruppe anzeigen.

Hinweis

Wenn die Baugruppe eingeschaltet und initialisiert wurde, darf nur "RUN" konstant leuchten. "FLO" sollte blinken, wenn Durchflussmessungen stattfinden.

14.2 Diagnose mit LED

LED-Nr.	Farbe	Bezeichnung	Bedeutung	
LED 1	rot	SF	Sammelfehler	
LED 2	grün	RUN	Einschalten / RUN (Startvorgang: blinkt, Betrieb: ein)	
LED 3	grün	FLO	Durchflussanzeiger, gibt die ungefähre Durchflussrate an: Langsames Blinken (2 Hz) = Abschaltung 33 % Mittelschnelles Blinken (5 Hz) = 33 66 % Schnelles Blinken (10 Hz) = 66 100 %	
LED 4	rot	SE	Messaufnehmerfehler	
LED 5	rot	PE	Prozessfehler	
LED 6	gelb	СОМ	MODBUS-Kommunikation aktiv , d. h., die adressierte Baugruppe sendet/empfängt	
LED 7	gelb	DI1	Digitaleingang	
LED 8	gelb	DO1	Digitalausgang 1	
LED 9	gelb	DO2	Digitalausgang 2	
LED 10	gelb	WP	WP (Schreibschutz aktiviert) oder im CT-Modus (eichpflichtiger Verkehr)	
LED 11	gelb	SIM	Simulationsmodus	
LED 12	gelb		(dient nur zur Anzeige von LED-Anzeigemustern beim Start und bei schwerwiegenden Fehlern)	

Tabelle 14-1 Bedeutung der LEDs im normalen Modus

14.2 Diagnose mit LED

Die LEDs liefern Ihnen erste wichtige Diagnoseinformationen.

Tabelle 14- 2	I EDs in den	verschiedenen	Betriebs	hasen
	LLDS III UEII	verschliedenen	Demensi	JIIaseii

Betriebsphase	LED s												Anmerkung
	1	2	3	4	5	6	7	8	9	10	11	12	
	SF (rd)	RUN (gn)	FLO (gn)	SE (rd)	PE (rd)	COM (ye)	DI1 (ye)	DO1 (ye)	DO2 (ye)	WP (ye)	SIM (ye)		
HW Rücksetzen	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	ca. 200 ms
Starten des Boot-Systems	х	Х	х	Х	х	х	х	х	х	х	х	х	ca. 500 ms
Starten der Anwendung	BS	0	0	0	0	0	BS	BS	BS	BS	BS	BS	ca. 100 ms oder 1,6 s (bei eingeschalteter Stromversorgung)
Starten des Messaufnehmer s	O/X	BS	0	O/X	O/X	O/X	O/X	O/X	O/X	O/X	O/X	0	Ca. 40 s LEDs 1, 4 11 je nach aktuellem Status
Normaler Modus	0/X	х	O/X	O/X	O/X	O/X	O/X	O/X	O/X	O/X	O/X	0	LEDs 1,3…11, je nach aktuellem Status
14.2 Diagnose mit LED

	LED s												
Gravierender Fehler	BF	0	0	BF	BF	0	O/ BF	O/ BF	O/ BF	O/ BF	O/ BF	O/ BF	LEDs 712, je nach Ernsthaftigkeit des Fehlers (siehe unten stehende Tabelle)
Boot-System laden	0	BF	O/X	0	0	O/X	х	Х	х	х	х	х	FLO LED = Programmierung des Flash

Hinweis

LED 12 wird nur zur Anzeige von Einschalt-LED-Mustern und von LED-Mustern für schwerwiegende Fehler verwendet.

Legende:		
O = OFF (AUS)	BS = langsames Blinken (2 Hz)	(rd) = rote LED
X = EIN	BM = mittelschnelles Blinken (5 Hz)	(gn) = grüne LED
O/X = AUS oder EIN	BF = schnelles Blinken (10 Hz)	(ye) = gelbe LED

1	2	3	4	5	6	7	8	9	10	11	12	Anmerkung
SF (rd)	RUN (gn)	FLO (gn)	SE (rd)	PE (rd)	COM (ye)	DI1 (ye)	DO1 (ye)	DO2 (ye)	WP (ye)	SIM (ye)		
BF	0	0	BF	BF	0	0	0	0	0	BF	BF	Neuer Code wird geladen
BF	0	0	BF	BF	0	BF	BF	BF	0	BF	BF	Fehler in Funktionsbaugruppendaten (CRC)
BF	0	0	BF	BF	0	0	0	0	BF	BF	BF	Fehler im Betriebssystem
BF	0	0	BF	BF	0	BF	0	0	BF	BF	BF	Fehler im Anwendungscode
BF	0	0	BF	BF	0	0	BF	0	BF	BF	BF	Fehler im Code des Boot-Systems
BF	0	0	BF	BF	0	BF	BF	0	BF	BF	BF	Fehler im Coriolis ASIC Zyklus
BF	0	0	BF	BF	0	0	0	BF	BF	BF	BF	Fehler beim Programmieren des FLASH
BF	0	0	BF	BF	0	BF	0	BF	BF	BF	BF	FRAM Fehler
BF	0	0	BF	BF	0	0	BF	BF	BF	BF	BF	DRAM Fehler
BF	0	0	BF	BF	0	BF	BF	BF	BF	BF	BF	Stromausfall aktiv

Legende: O = OFF (AUS)

X = EIN O/X = AUS oder EIN BS = langsames Blinken (2 Hz) BM = mittelschnelles Blinken (5 Hz) BF = schnelles Blinken (10 Hz) (rd) = rote LED (gn) = grüne LED

(ye) = gelbe LED

Die Diagnosemeldungen mit möglichen Ursachen und Abhilfemaßnahmen finden Sie in der Tabelle "Messaufnehmerfehler und Prozessfehler" (Seite 158) und in der Tabelle "Datenund Bedienfehler" (Seite 162).

14.3 Diagnose mit PDM

SIMATIC PDM ist ein geeignetes Tool zur Diagnose des Geräts. SIMATIC PDM kann verwendet werden, um alle in SIFLOW FC070 verfügbaren Parameter in eine Tabelle zur Offline-Analyse einzulesen und um Online-/aktuelle Prozesswerte und Online-/aktuelle Diagnoseinformationen anzuzeigen.

Anforderungen

Vor der Inbetriebnahme müssen folgende Arbeitsschritte ausgeführt werden:

- Installation von PDM und SIFLOW FC070 PDM Driver (siehe auch Software-Installation (Seite 51))
- Anschluss der Modbus Schnittstelle. (Siehe auch Anschließen (Seite 37))

Diagnose mit PDM

Online-Prozesswerte sind im Menü "Ansicht->Anzeige" verfügbar.

Display - Compact (Online)			×
Measured Value			
Mass Flow 15,0000 kg/h	Volume Flow		0,0170 m3/h
0,00000 kgh 15,0000 kgh 30,0000 kgh	0,000000 m3	/h 0,0100 m3/h	0,0200 m3/h
Density 999,9999 kg/m3	Fraction A (flo	w)	0,0008 kg/s
100,0000 kg/m3 1050,0000 kg/m3 2000,0000 kg/m3	0 kg/s	0,0028 kg/s	0,0056 kg/s
Temperature 0,00 °C	Fraction B (flo	/w)	0,0033 kg/s
0,00 °C 62,50 °C 125,00 °C	0 kg/s	0,0028 kg/s	0,0056 kg/s
	Pct. fraction A.	20,0	%
Totalizer 1 10081,6416 kg BATCH ACTIVE - Totalizer 2 not available.	System status	Simulation active Data and time not in sync Parameter changed by S7 Parameter changed by Modbus Batch running	K) ()
Close Messages			Help

Bild 14-1 PDM Online-Ansicht

Online-Diagnoseinformationen sind im Menü "Ansicht->Gerätestatus" und "Ansicht->Logbuch" verfügbar.

14.4 Fehlerbehebungsmessaufnehmel	r und schwankende Messwerte
-----------------------------------	-----------------------------

Device Status - Compact (Online)							
Device Special information Diagr	nostic System status						
Data and time]					
Driver signal	12,5] mA					
Pick-up 1 amplitude	94,9	mV					
Pick-up 2 amplitude	92,4]m∨					
Sensor frequency	123,670	Hz					
Transmitter temperature	51,33]•C					
Sensor temperature	0,00]•C					
Operating time total	1959	h					
Operating time since powerup	95	h					
Close Messages			Help				

Bild 14-2 PDM Online-Gerätestatus

14.4.1 Allgemeine Informationen

Falsche und instabile Messungen vor allem bei niedrigem Durchfluss sind normalerweise das Ergebnis eines instabilen Nullpunkts. Dieser wird verursacht durch:

- fehlerhaften Einbau
- Luftblasenbildung in der Flüssigkeit
- Schwingungen/"Cross talk" (Übersprechen)
- Feststoffpartikel in der Flüssigkeit

Im Folgenden finden Sie eine Anleitung zur Fehlerbehebung in vier Schritten:

- Schritt 1 Vorläufige Prüfung der Anwendung
- Schritt 2 Nullpunkteinstellung
- Schritt 3 Messfehlerberechnung
- Schritt 4 Verbesserung der Anwendung

Mit Hilfe dieser Anleitung sind Sie in der Lage, Ursachen für Fehlmessungen zurückzuverfolgen und die Anwendung zu verbessern.

14.4.2 Schritt 1: Prüfung der Anwendung

Der erste Schritt des Fehlerbehebungsverfahrens ist es, die Anwendung auf einige leicht behebbare Fehler hin zu prüfen.

Überprüfen Sie Folgendes:

- Der Messaufnehmer und der SENSORPROM-Speicherbaustein stimmen überein (gleiche Seriennummern).
- Der Messaufnehmer befindet sich an einem Einbauort, an dem er keinen Schwingungen ausgesetzt ist. Schwingungen können den Messaufnehmer stören und somit zu Messfehlern führen.
- Der Messaufnehmer ist ausschließlich mit Flüssigkeit gefüllt. Luft- oder Gasblasenbildung führt zu Instabilität und kann Messfehler verursachen.

Hinweis

Um hoch genaue Messungen zu ermöglichen, muss die Flüssigkeit homogen sein. Enthält die Flüssigkeit Feststoffpartikel von höherer Dichte als die Flüssigkeit, können diese Feststoffe insbesondere bei zu niedrigen Durchflussraten ausfällen. Dies bewirkt Instabilität im Messaufnehmer und führt zu Messfehlern.

Problemlösung zu Schritt 1:

- 1. Überprüfen Sie, ob der Messaufnehmer und der SENSORPROM®-Speicherbaustein identische Seriennummern aufweisen.
- 2. Stellen Sie sicher, dass der Messaufnehmer gemäß der Beschreibung im Installationskapitel seines Gerätehandbuchs installiert ist.
- 3. Spülen Sie das Rohrsystem und den Messaufnehmer mehrere Minuten lang bei maximaler Durchflussrate durch, um evtl. vorhandene Luftblasen zu beseitigen.

14.4.3 Schritt 2: Automatische Nullpunkteinstellung

Der zweite Schritt des Fehlerbehebungsverfahrens besteht darin, den Nullpunkt des Gerätes einzustellen. Weitere Informationen zur Nullpunkteinstellung finden Sie im Kapitel Inbetriebnahme.

Siehe auch

Inbetriebnahme mit SIMATIC PDM (Seite 77) Inbetriebnahme mit SIMATIC S7 (Seite 83)

14.4.4 Schritt 3: Berechnung des Messfehlers

Berechnung des Messfehlers

Das Ergebnis der Nullpunkteinstellung zeigt Ihnen, ob der Nullpunkt unter korrekten und stabilen Bedingungen festgelegt wurde. Je niedriger der Wert von ZERO SIGMA, umso niedriger ist der Messfehler.

Bei einem richtig installierten Durchflussmessgerät liegt der ZERO SIGMA-Wert ungefähr in der gleichen Größenordnung wie der spezifizierte Nullpunktfehler für die Nennweite des Messaufnehmers. Die spezifizierten Nullpunktfehler von MASS 2100 und MC2 finden Sie in folgender Tabelle.

Nennweite Messaufnehmer	Nullpunktfehler/ ZERO SIGMA-Wert.
Di 1.5	0,001 kg/h
Di 3	0,010 kg/h
DN 4	0,010 kg/h
Di 6	0,050 kg/h
Di 15	0,2 kg/h
Di 25	1,5 kg/h
Di 40	6 kg/h
DN 10	0,25 kg/h
DN 15	1,2 kg/h
DN 25	3 kg/h

Tabelle 14- 4 Nullpunktfehler MASS 2100 / FC300 / FCS200

Fabelle 14-	5	Nullpunktfehler MC2
-------------	---	---------------------

Nennweite Messaufnehmer	Nullpunktfehler/ ZERO SIGMA-Wert.
DN 20	0,6 kg/h
DN 25	0,96 kg/h
DN 40	2,85 kg/h
DN 50	5,5 kg/h
DN 65	11,4 kg/h
DN 80	14,8 kg/h
DN 100	25 kg/h
DN150	66 kg/h

Ausgehend vom angezeigten Wert für ZERO SIGMA kann der Fehler berechnet werden, der für verschiedene Durchflussraten zu erwarten ist, ohne zeitaufwändige Messungen durchzuführen. Mithilfe der folgenden Formel lässt sich einschätzen, ob die Anwendung im gegebenen Zustand eingesetzt werden kann oder ob mehr Zeit für die Verbesserung der Installation aufgewendet werden sollte.

E	=	Z x 100 % / Qm
E	=	Messfehler in % der Durchflussrate
Z	=	Zero Sigma-Wert in kg/h
Qm	=	aktuelle Durchflussrate (in kg/h)

Beispiel 1: Anwendung mit niedrigem Durchfluss

- Messaufnehmer DI 15. Der Messaufnehmer ist laut Spezifikation f
 ür max. 5600 kg/h ausgelegt.
- Der Nullpunktfehler/ ZERO SIGMA-Wert ist mit 0,2 kg/h angegeben.
- Durchfluss: Min. 10 kg/h Max. 100 kg/h

Nach Durchführung der Nullpunkteinstellung wird ein ZERO SIGMA -Wert 'Z' von 1 kg/h angezeigt, d. h. ein fünf Mal höherer Wert als für den Messaufnehmer spezifiziert.

Der Fehler wird für eine Durchflussrate von 10 kg/h wie folgt geschätzt:

• E = 1 kg/h x 100 % / 10 kg/h = 10 %.

Für eine Durchflussrate von 100 kg/h wird der Fehler wie folgt geschätzt:

• E = 1 kg/h x 100 % / 100 kg/h = 1 %.

Bei dieser Anwendung ist es notwendig, die Ursache des relativ hohen ZERO SIGMA-Wertes näher zu untersuchen, um Maßnahmen zur Verbesserung der Messgenauigkeit festlegen zu können.

Beispiel 2: Anwendung mit hohem Durchfluss

- Messaufnehmer DI 15. Die Durchflussrate f
 ür den Messaufnehmer ist mit max. 5600 kg/h angegeben
- Der Nullpunktfehler/ZERO SIGMA-Wert ist mit 0,2 kg/h angegeben.
- Durchflussrate: Min. 1000 kg/h Max. 3000 kg/h

Nach Durchführung der Nullpunkteinstellung wird ein ZERO SIGMA -Wert 'Z' von 1 kg/h angezeigt, d. h. ein fünf Mal höherer Wert als für den Messaufnehmer spezifiziert.

Der Fehler wird für eine Durchflussrate von 1000 kg/h wie folgt geschätzt:

• E = 1 kg/h x 100 % / 1000 kg/h = 0,1 %.

Für eine Durchflussrate von 3000 kg/h wird der Fehler wie folgt geschätzt:

E = 1 kg/h x 100 % / 3000 kg/h = 0,03 %
 Hinzu kommt der Linearitätsfehler von 0,1 %

Hieran ist zu erkennen, dass der ZERO SIGMA-Wert von 1 kg/h in diesem Fall keine große Bedeutung hat. Der aus diesem Wert resultierende Fehler beträgt bei einem Durchfluss von 1000 kg/h nur 0,1 % und liegt bei höheren Durchflussraten noch niedriger.

Bei der Durchflussrate und dem Nullpunktfehler (ZERO SIGMA-Wert) wie gegeben ist es also für diese Installation normalerweise nicht sinnvoll, zusätzliche Zeit in die Verbesserung der Anwendung zu investieren.

14.4.5 Schritt 4: Verbesserung der Anwendung

Ein zusätzlicher Zeit- und Geldaufwand für die Optimierung der Installation und damit der Messgenauigkeit lohnt sich nicht immer. Es sollte aber in jedem Fall überprüft werden, wodurch ein Nullpunktfehler (ZERO SIGMA-Wert) verursacht wird.

Im Folgenden wird beschrieben, wie Sie die Ursachen eines hohen ZERO SIGMA-Wertes ermitteln und die Installation verbessern können.

Einstellung der "Schleichmengenunterdrückung"

Um feststellen zu können, ob der Nullpunkt sich durch Änderungen/Einstellungen stabilisiert, ist die "Schleichmengenunterdrückung" auf 0,0 % festzulegen.

Dies geschieht am Messumformer:

MASS 6000	SIFLOW FC070
Wählen Sie die Menüeinträge	Wählen Sie PDM-Tabelle.
Grundeinstellungen	Wählen Sie Eingang.
→ Schleichmengenunterdrückung	

Nach Einstellung der "Schleichmengenunterdrückung" lässt sich die Instabilität direkt am Massedurchfluss in kg/h ablesen. Dieser wird in der Messumformer-Anzeige oder im Online-Fenster ("Ansicht → Messwertanzeige") angezeigt.

Diese Information ist bei der Fehlerbehebung nützlich. Beispielsweise können Sie daraufhin die Bügel, die den Aufnehmer halten, fester anziehen oder die Pumpe ausschalten, um festzustellen, ob von der Pumpe ausgehende Schwingungen den Messaufnehmer stören usw.

Falsche Montage des Messaufnehmers

 Wurde der Messaufnehmer ordnungsgemäß installiert, d. h. wie in der Anleitung gezeigt am Boden/an der Wand oder am Montagerahmen mit geeigneten Montagebügeln befestigt?

Insbesondere bei niedrigen Durchflussraten, d. h. bei weniger als 10 % des maximalen Messbereichs des Durchflussmessgeräts, ist ein ordnungsgemäßer und stabiler Einbau des Aufnehmers unerlässlich.

Bei nicht ordnungsgemäßem Einbau des Messaufnehmers am Einbauort kommt es zu Nullpunktverschiebungen des Messaufnehmers und dadurch zu Messfehlern.

Ziehen Sie die Montagebügel des Aufnehmers fester an, und überprüfen Sie, ob hierdurch der gemessene Durchfluss stabiler wird.

Schwingungen und "Crosstalk" (Übersprechen)

Schwingungen im Rohrsystem werden normalerweise von Pumpen hervorgerufen.

"Cross talk" oder Übersprechstörungen rühren in der Regel daher, dass zwei Messaufnehmer dicht beieinander auf demselben Rohr oder auf derselben Montageschiene/demselben Montagerahmen installiert sind.

Schwingungen und Übersprechstörungen wirken sich mehr oder weniger auf die Nullpunktstabilität und somit auf die Messgenauigkeit aus.

- Prüfen Sie, ob Schwingungen vorliegen. Schalten Sie die Pumpe aus, und prüfen Sie, ob dies die Nullpunktstabilität verbessert, d. h. ob die Schwankungen der Durchflussrate (in kg/h) nachlassen. Wenn die Störung des Messaufnehmers durch Schwingungen von der Pumpe verursacht werden, muss die Installation verbessert oder die Pumpe, z. B. gegen einen anderen Typ, ausgetauscht werden.
- 2. Prüfen Sie, ob Übersprechstörungen vorliegen.

Schalten Sie die Stromversorgung des/der anderen Durchflussmessgeräts(e) aus, und warten Sie ca. 2 Minuten, sodass die Schwingungen der Rohre im Messaufnehmer aufhören. Überprüfen Sie nun, ob die Nullpunktstabilität hierdurch verbessert wurde, d. h. ob die Schwankungen des Wertes in kg/h zurückgegangen sind. Ist dies der Fall, stören die Messaufnehmer einander, und die Installation muss verbessert werden.

Luftblasen in der Flüssigkeit

Luftblasen in der Flüssigkeit führen zur Instabilität des Nullpunktes und somit zu einer verschlechterten Messgenauigkeit.

So stellen Sie das Vorhandensein von Luftblasen fest:

• Überprüfen Sie den Erregerstrom.

MASS 6000	SIFLOW FC070
Menüeinträge:	Onlinemenü:
Servicemodus → Spezielle Informationen	Ansicht → Gerätestatus

- Prüfen Sie, ob der "Erregerstrom" Schwankungen um mehr als ± 1 mA aufweist. Ist dies der Fall, liegt dies normalerweise an Luft- oder Gasblasen in der Flüssigkeit.
- Erhöhen Sie den Druck im Messaufnehmer durch Erhöhung des Staudrucks, indem Sie entweder die Öffnung am Auslassventil reduzieren oder den Pumpendruck erhöhen. Dadurch werden die Luftblasen im Messaufnehmer verkleinert. Ein fallender Wert oder nachlassende Stabilität des "Erregerstroms" sind ein Nachweis für das Vorhandensein von Luft- oder Gasblasen in der Flüssigkeit.

Typische Ursachen von Luftblasen in der Flüssigkeit

- Die Eingangspumpe und der Messaufnehmer wurden nicht ordnungsgemäß mit Flüssigkeit gefüllt. Die Pumpe kavitiert, die Pumpendrehgeschwindigkeit ist im Verhältnis zur Flüssigkeitszufuhr der Pumpe zu hoch.
- Zu hohe Durchflussrate im Rohr; hierdurch können vor dem Durchflussmessgerät befindliche Bauteile eine Hohlraumbildung verursachen.
- Wenn vor dem Durchflussmessgerät ein Filter angebracht ist, kann dieses kurz davor sein, sich zuzusetzen, wodurch ebenfalls Hohlräume entstehen.

Feststoffpartikel in der Flüssigkeit

Enthält die Flüssigkeit Feststoffpartikel von höherer Dichte als die Flüssigkeit, können diese Feststoffe innerhalb des Messumformers ausfällen. Dies führt zur Instabilität der Messung und Messfehlern.

In der Flüssigkeit evtl. vorhandene Feststoffpartikel müssen homogen verteilt sein und dieselbe Dichte wie die Flüssigkeit aufweisen. Andernfalls können sie zu relativ großen Messfehlern führen.

Es ist wichtig, den Messaufnehmer so einzubauen, dass Feststoffpartikel ungehindert aus dem Messaufnehmer ablaufen können.

- Bei den MASS 2100-Messaufnehmern wird dies durch eine nahezu waagerechte Einbaulage mit dem Einlass am höchsten und dem Auslass am niedrigsten Punkt erreicht.
- Bei MC2-Messaufnehmern wird es durch eine senkrechte Einbaulage oder nahezu waagerechte Einbaulage mit dem Einlass am höchsten und dem Auslass am niedrigsten Punkt erreicht.
- Überprüfen Sie die Flüssigkeit auf Feststoffpartikel: Nehmen Sie eine Probe der Flüssigkeit, füllen Sie ein Glas damit, und beobachten Sie, ob die Feststoffe ausfällen.

Diagnose und Fehlerbehebung

14.4 Fehlerbehebungsmessaufnehmer und schwankende Messwerte

15

Technische Daten

Messung von:		Massedurchfluss [kg/s], Volumende Dichte [kg/m ³], Temperatur [°C]	urchfluss [l/s], Fraktion [%], Brix,	
Digita	alausgänge (2 x)			
	Frequenz	0-12 kHz, 50 % Tastverhältnis		
	Filterzeitkonstante	0-99,9 s		
	Anschluss	passiv, als Highside- oder Lowside	-Schalter verwendbar	
	Spannung	DC 3-30 V		
	Strom	0-30 mA, kurzschlussfest, verpolsio	cher	
Digita	aleingang			
	Funktionalität	Batch-Steuerung / Zählersteuerung Nullpunkteinstellung / Einstellen oc den Digitalausgängen, wenn diese	g (Rücksetzen der Zähler) / ler Einfrieren einer Frequenz an auf "Frequenz" eingestellt sind	
	Spannung	DC 15-30 V		
	Strom	2 bis 15 mA		
Potenzialtrennung		Alle Ein- und Ausgänge sowie die Kommunikationsschnittstellen sind galvanisch getrennt, Isolationsspannung 500 V gemäß IEC 61131- 2:2003		
Schleichmengenunterdrücku				
Schleichmenge		0-9,9 % vom maximalen Durchfluss		
Grenzwertfunktion		Massedurchfluss, Volumendurchfluss, Fraktion, Dichte, Messaufnehmertemperatur		
Summenzähler		Massedurchfluss, Volumendurchfluss, Fraktion, Zähler (SIMATIC: REAL 7-stellig / MODBUS: DOUBLE 15-stellig) für Vorlauf, Nettodurchfluss oder Rückfluss		
Kom	munikation			
	SIMATIC	SIMATIC-Rückwandbus (P-Bus)		
MODBUS		RS232 oder RS485 über Frontstecker		
Gehäuse				
Werkstoff		Kunststoff (Noryl), dunkelgrau		
Abmessungen	SIFLOW FC070	SIFLOW FC070 Ex CT		
(B x H x T)		40 mm x 125 mm x 117 mm	80 mm x 125 mm x 117 mm	
	Gewicht	SIFLOW FC070	SIFLOW FC070 Ex CT	
	(ohne Frontstecker)	350 g	500 g	
	Schutzart	IP20	•	
	Belastung	Mechanische Belastung nach DIN EN 60068-2-x		
Dolaotalig				

Mechanische Daten			
Schwingungen während des Betriebs		Nach IEC 60721-3-3, Teil 3-3, IEC 61131-2, IEC 60068-2-6:1996, Klasse 3M3, Prüfung Fc	
		Prüfbedingungen: Frequenz: 5 9 Hz, Ablenkung: 3,5 mm, 10 Zyklen pro Achse, 1 Oktave/min Frequenz: 9 150 Hz, Beschleunigung: 9,8 m/s ² , 10 Zyklen pro Achse, 1 Oktave/min	
	Stoß während des	Nach IEC 61131-2, IEC 60068-2-2	7, Klasse 3M3, Prüfung Ea
	Betriebs	Prüfbedingungen: Beschleunigung 150 m/s ² , Halbsinus, Dauer: 11 ms, je 3 pro Achse in positiver und negativer Richtung	
Elektr Verträ	omagnetische glichkeit (EMV)	Störausstrahlung DIN EN 55011 G Umgebung)	ruppe 1, Klasse A (industrielle
		Störfestigkeit DIN EN 61000-6-2	
Überspannungsschutz für Stromversorgungsleitungen		Zur Erfüllung der Anforderungen sollte ein externer Überspannungsschutz eingebaut werden, z. B. DEHN BVT AD24, Nr. 918402 (oder gleichwertig)	
Namu	r	Gemäß Empfehlung NE21	
Klimatische Umweltbedingungen			
	Umgebungstemperatur bei horizontal montierter Schiene	r 0 °C 60 °C Für SIFLOW FC070 Ex CT: -40 °C 60 °C	
	Umgebungstemperatur bei vertikal montierter Schiene	0 °C 45 °C Für SIFLOW FC070 Ex CT: -40 °C	45 °C
	Lager- und Transporttemperatur	-40 °C +70 °C	
	Relative Luftfeuchtigkeit	5 % 95 %	
Stromversorgung		Mit Verpolungsschutz	
Spannung		DC 24 V direkt von der Frontseite, Einsatz auch möglich ohne Stromversorgung von SIMATIC Bus-Leiterplatte	
	Toleranz DC 20,4 V – DC 28,8 V		
	Stromaufnahme	ufnahme Max. 7,2 W	
Siche	rung	Sicherung T1 A, 125 V – nicht vom Benutzer auswechselbar	
Zertifi	zierungen	SIFLOW FC070	SIFLOW FC070 Ex CT
		CE, cULus	CE, cULus

Technische Daten

15.1 MODBUS-Kommunikation

Ex-Zulassung	SIFLOW FC070	SIFLOW FC070 Ex CT
	ATEX Zone 2 EN 60079-15 II 3G Ex nA IIC T4 Gc KEMA 07 ATEX 0202 X Einsatz der Funktionsbaugruppe in Zone 2 nur mit IP54- Umgehäuse	Für explosionsgefährdete Bereiche: ATEX, IECEx, cCSAus, cFMus
		Zugehöriges elektrisches Betriebsmittel mit eigensicheren Ein-/Ausgängen (von/zu Coriolis-Messaufnehmer) II 3G Ex nA IIC T4 Gc II (1)G [Ex ia] IIC Ga
		Besondere Bedingungen ("X"- Bedingungen) sind zu beachten.
		cFMus und cCSAus Class I, Zone 2, AEx nA [ia] IIC T4 Installation gemäß Steuerplan
		Einsatz der Funktionsbaugruppe in Zone 2 nur mit IP54- Umgehäuse

15.1 MODBUS-Kommunikation

Funktion	SIFLOW FC070 als MODBUS-Slave	
Physikalische Schicht	RS232	RS485
	Punkt-zu-Punkt-Verbindung	Zweidraht-Busstruktur
Anwendbare Norm	ANSI / TIA / EIA-232-F-1997	ANSI / TIA / EIA-485-A-1998
Anschluss an	SIFLOW FC070: Frontstecker X1,	SIFLOW FC070: Frontstecker X1,
SIFLOW FC070	Pins 2 4 (1 = Schirm).	Pins 5 … 10 (1 = Schirm).
	SIFLOW FC070 Ex CT: Frontstecker X2,	SIFLOW FC070 Ex CT: Frontstecker X2,
	Pins 2 4 (1 = Schirm).	Pins 5 10 (1 = Schirm).
Datenübertragungsraten	0 = 1200 Bit/s 1 = 2400 Bit/s 2 = 4800 Bit/s 3 = 9600 Bit/s 4 = 19200 Bit/s (Voreinstellung) 5 = 38400 Bit/s 6 = 57600 Bit/s 7 = 76800 Bit/s 8 = 115200 Bit/s	0 = 1200 Bit/s 1 = 2400 Bit/s 2 = 4800 Bit/s 3 = 9600 Bit/s 4 = 19200 Bit/s (Voreinstellung) 5 = 38400 Bit/s 6 = 57600 Bit/s 7 = 76800 Bit/s 8 = 115200 Bit/s
Maximale Ubertragungsrate	115,2 kbit/s	115,2 kbit/s
Broadcast	-	Nein
Leitung	Verdrilltes Leiterpaar + Erdung, geschirmt	Verdrilltes Leiterpaar, geschirmt
Maximale Leitungslänge	15 m	1200 m Gesamtlänge
Anzahl Stationen	1	32
Slave-Geräteadresse	Mit DIP-Schalter oder durch SIMATIC (HW Konfig) oder über MODBUS selbst	Mit DIP-Schalter oder durch SIMATIC (HW Konfig) oder über MODBUS selbst
Busabschluss	-	zuschaltbar durch Einsetzen von Drahtbrücken am letzten Busteilnehmer

Technische Daten

15.2 Blockschaltbild SIFLOW FC070

15.2 Blockschaltbild SIFLOW FC070

Blockschaltbild SIFLOW FC070

Bild 15-1 Blockschaltbild SIFLOW FC070

15.3 Blockschaltbild SIFLOW FC070 Ex CT

Die Installationsrichtlinien und Sicherheitsanweisungen in diesen Unterlagen sowie die unten aufgelisteten müssen bei Inbetriebnahme und Betrieb befolgt werden.

Es ist von entscheidender Bedeutung die "Grundlegenden Regeln und Richtlinien" gemäß der Beschreibung für Funktionsmodule des Typs Ex im Gerätehandbuch "S7-300 PLCs, ET 200M: EX E/A-Module" zu befolgen.

Bitte beachten Sie auch folgende Unterlagen

- SIMATIC Systemhandbuch: Grundlagen des Explosionsschutzes
- S7-300, ET 200M Automationssystemhandbuch: EX E/A-Module

15.4 Auslösen von Befehlen über Digitaleingang

- S7-300 Automationssystem-Nachschlagewerk: Moduldaten
- SIMATIC S7-300, CPU 31xC und CPU 31x Betriebsanleitung: Installation
- SIMATIC S7-400 Installationshandbuch: Installation

Alle Unterlagen sind verfügbar unter:

http://www.automation.siemens.com/simatic/portal/html_76/techdoku.htm (http://www.automation.siemens.com/simatic/portal/html_76/techdoku.htm)

15.4 Auslösen von Befehlen über Digitaleingang

Bild 15-2 Chara

Charakteristische Eingangsdaten (Auslösen von Befehlen über Digitaleingang)

15.5 Ausgangskenndaten

15.5 Ausgangskenndaten

Frequenzausgang

Frequenzausgang mit Schleichmengenunterdrückung

Impulsausgang

Impulsausgang mit Schleichmengenunterdrückung

Batching (Dosieren) am Digitalausgang

Zweistufiger Batch

Technische Daten

15.5 Ausgangskenndaten

Frequenzausgang

15.5 Ausgangskenndaten

Impulsausgang

Technische Daten

15.5 Ausgangskenndaten

16

Ersatzteile/Zubehör

16.1 Bestellen

Um sicherzustellen, dass die von Ihnen benutzten Bestelldaten nicht veraltet sind, sind die neuesten Bestelldaten jeweils im Internet verfügbar Auto hotspot

16.2 Bestelldaten

Funktionsbaugruppen	
	Bestell-Nr.:
SIFLOW FC070	7ME4 120-2DH20-0EA0
SIFLOW FC070 Ex CT	7ME4 120-2DH21-0EA0

Zubehör	
	Bestell-Nr.:
Frontstecker 40-polig, für SIFLOW FC070	6ES7392-1AM00-0AA0
Frontstecker 20-polig, für SIFLOW FC070 Ex CT	6ES7392-1AJ00-0AA0
Kabel mit Mehrfachstecker zum Anschluss von MASS2100-, FCS200- und FC300- Messaufnehmern 5 m 10 m 25 m	FDK:083H3015 FDK:083H3016 FDK:083H3017 FDK:083H3018
50 m 75 m 150 m	FDK:083H3054 FDK:083H3055
Kabel mit Mehrfachstecker zum Anschluss von MC2-Messaufnehmern 10 m 25 m 75 m 150 m	FDK:083H3001 FDK:083H3002 FDK:083H3003 FDK:083H3004
Schirmauflageelement (ohne Anschlussklemmen), 80mm breit, für 2 x 4 Schirm-Anschlussklemmen	6ES7390-5AA00-0AA0
Schirm-Anschlussklemme für 1 Kabel 38 mm Durchmesser	6ES7390-5BA00-0AA0
Schirm-Anschlussklemme für 1 Kabel 413 mm Durchmesser	6ES7390-5CA00-0AA0

16.2 Bestelldaten

SIMATIC S7-300-Profilschienen		
Länge Profilschiene	Nutzbare Länge für Baugruppe	Bestellnummer:
160 mm	120 mm	6ES7 390
482,6 mm	450 mm	6ES7 390
530 mm	480 mm	6ES7 390
830 mm	780 mm	6ES7 390
2000 mm	nach Bedarf zuschneiden	6ES7 390

Die 2-m-Profilschiene besitzt im Unterschied zu anderen Profilschienen keine Befestigungsbohrungen. Diese müssen gebohrt werden. Damit kann die 2-m-Profilschiene optimal an Ihre Anwendung angepasst werden.

Zu weiterem Zubehör siehe den SIMATIC-Katalog oder die SIEMENS A&D Mall:

https://mall.automation.siemens.com

SIFLOW-Befehle

A.1 SIFLOW-Befehle

Die SIFLOW-Befehle werden unmittelbar an die Baugruppe übergeben.

Tabelle A- 1	SIFLOW-Befehle

Code	Name	Erläuterung
0		Ungültiger Befehlscode
1	CMD_BATCH_START	Batch starten
2	CMD_BATCH_HOLD	Batch anhalten
3	CMD_BATCH_CONTINUE	Batch fortsetzen
4	CMD_BATCH_STOP	Batch beenden
5	CMD_BATCH_CYCLE_COUNTER_RESET	Zähler batch_cycle_counter zurücksetzen
6	CMD_TOTALIZER_1_RESET	Summenzähler 1 auf null zurücksetzen und Zählung neu starten
7	CMD_TOTALIZER_1_HOLD	Summenzähler 1 anhalten (wird in einigen Fällen bei der Rohrreinigung verwendet, wenn die Reinigungsflüssigkeit nicht addiert werden soll)
8	CMD_TOTALIZER_1_CONTINUE	Summenzähler 1 nach dem Anhalten wieder aktivieren
9	CMD_TOTALIZER_1_PRESET	Summenzähler 1 auf den Wert value totalizer1_preset_value voreinstellen und Zählung neu starten
10	CMD_TOTALIZER_2_RESET	Summenzähler 2 auf null zurücksetzen und Zählung neu starten
11	CMD_TOTALIZER_2_HOLD	Summenzähler 2 anhalten (wird in einigen Fällen bei der Rohrreinigung verwendet, wenn die Reinigungsflüssigkeit nicht addiert werden soll)
12	CMD_TOTALIZER_2_CONTINUE	Summenzähler 2 nach dem Anhalten wieder aktivieren
13	CMD_TOTALIZER_2_PRESET	Summenzähler 2 auf den Wert value totalizer2_preset_value voreinstellen und Zählung neu starten
14	CMD_TOTALIZER_1_2_RESET	Summenzähler 1 + 2 auf null zurücksetzen und Zählung neu starten
15	CMD_TOTALIZER_1_2_HOLD	Summenzähler 1 + 2 anhalten (wird in einigen Fällen bei der Rohrreinigung verwendet, wenn die Reinigungsflüssigkeit nicht addiert werden soll)
16	CMD_TOTALIZER_1_2_CONTINUE	Summenzähler 1 + 2 nach dem Anhalten wieder aktivieren
17	CMD_TOTALIZER_1_2_PRESET	Summenzähler 1 auf den Wert totalizer1_preset_value und Summenzähler 2 auf den Wert totalizer2_preset_value setzen und Zählung neu starten
18	CMD_START_AUTO_ZERO_ADJUST	Automatischen Nullabgleich starten
19	CMD_PARA_CHANGE_ACK	Bestätigen, dass geänderte Parameter erkannt werden
		Statusbit ST_PARAMETER_CHANGED_BY_S7 zurücksetzen, wenn der Ursprung des Befehls Modbus ist.
		Statusbit ST_PARAMETER_CHANGED_BY_MODBUS zurücksetzen, wenn der Ursprung des Befehls S7 P-Bus ist.

A.1 SIFLOW-Befehle

Code	Name	Erläuterung
20	CMD_LOAD_FACTORY_VALUES	Alle Parameter auf Werkseinstellungen zurücksetzen
		Statusbit ST_FACTORY_VALUES_LOADED setzen, nachdem alle Werkseinstellungen im SENSORPROM gespeichert sind
21	CMD_FREEZE_OUTPUT_ON	Ausgangswert 1 + 2 einfrieren
22	CMD_FREEZE_OUTPUT_OFF	Vom eingefrorenen Ausgangswert 1 + 2 auf normalen Ausgangswert umschalten
23	CMD_FORCE_OUTPUT_ON	Ausgangswert 1 + 2 setzen (forcen)
24	CMD_FORCE_OUTPUT_OFF	Vom gesetzten Ausgangswert auf normalen Ausgangswert umschalten
25	CMD_ZERO_OFFSET_VALUE_PRESET	DS31 → zero_offset_value auf den Wert
		$DR11 \rightarrow zero_offset_preset_value einstellen$
26 250	Reserviert	
251	CMD_PERI_700_VARS	S7-Peripherie-Steuerungsbereich: Neuer Wert in einem der folgenden Felder: input_var_addr, input_var_value, digital_output, output_var1_addr, output_var2_addr
252	CMD_PERI_701_IN_VAR	S7-Peripherie-Steuerungsbereich: Neuer Wert im Feld input_var_addr oder input_var_value
253	CMD_PERI_702_DIGITAL_OUTPUT	S7-Peripherie-Steuerungsbereich: Neuer Wert im Feld digital_output
254	CMD_PERI_703_OUT_VAR1_ADDR	S7-Peripherie-Steuerungsbereich: Neuer Wert im Feld output_var1_addr
255	CMD_PERI_704_OUT_VAR2_ADDR	S7-Peripherie-Steuerungsbereich: Neuer Wert im Feld output_var2_addr

Hinweis

Beim Zugriff von der ET200M mit PROFIBUS ist es nicht möglich, SIFLOW-Befehle über PDM zu verwenden.

SIFLOW Einheiten

Lfd. Nr.	Einheit	Beschreibung
00	kg/s	Kilogramm pro Sekunde
01	g/s	Gramm pro Sekunde
02	g/min	Gramm pro Minute
03	g/h	Gramm pro Stunde
04	g/d	Gramm pro Tag
05	kg/min	Kilogramm pro Minute
06	kg/h	Kilogramm pro Stunde
07	kg/d	Kilogramm pro Tag
08	t/s	metrische Tonnen pro Sekunde
09	t/min	metrische Tonnen pro Minute
10	t/h	metrische Tonnen pro Stunde
11	t/d	metrische Tonnen pro Tag
12	lb/s	Pfund pro Sekunde
13	lb/min	Pfund pro Minute
14	lb/h	Pfund pro Stunde
15	lb/d	Pfund pro Tag
16	STONS/s	amerikanische Tonnen pro Sekunde (1 STons = 2000 Pfund)
17	STONS/min	amerikanische Tonnen pro Minute
18	STONS/h	amerikanische Tonnen pro Stunde
19	STONS/d	amerikanische Tonnen pro Tag
20	LTONS/s	britische Tonnen pro Sekunde
21	LTONS/min	britische Tonnen pro Minute
22	LTONS/h	britische Tonnen pro Stunde
23	LTONS/d	britische Tonnen pro Tag
24	mg/s	Milligramm pro Sekunde
25	mg/min	Milligramm pro Minute
26	mg/h	Milligramm pro Stunde
27	mg/d	Milligramm pro Tag

Tabelle B-1 Einheiten für Massedurchfluss

Lfd. Nr.	Einheit	Beschreibung		
00	m³/s	Kubikmeter pro Sekunde		
01	m³/min	Kubikmeter pro Minute		
02	m³/h	Kubikmeter pro Stunde		
03	m³/d	Kubikmeter pro Tag		
04	l/s	Liter pro Sekunde		
05	l/min	Liter pro Minute		
06	l/h	Liter pro Stunde		
07	l/d	Liter pro Tag		
08	Ml/d	Megaliter pro Tag		
09	ft ³ /s	Kubikfuß pro Sekunde		
10	ft³/min	Kubikfuß pro Minute		
11	ft³/h	Kubikfuß pro Stunde		
12	ft³/d	Kubikfuß pro Tag		
13	gal/s	US-Gallonen pro Sekunde		
14	gal/min	US-Gallonen pro Minute		
15	gal/h	US-Gallonen pro Stunde		
16	gal/d	US-Gallonen pro Tag		
17	Mgal/d	US-Megagallonen pro Tag		
18	ImpGal/s	britische Gallonen pro Sekunde		
19	ImpGal/min	britische Gallonen pro Minute		
20	ImpGal/h	britische Gallonen pro Stunde		
21	ImpGal/d	britische Gallonen pro Tag		
22	bbl/s	Barrel pro Sekunde		
23	bbl/min	Barrel pro Minute		
24	bbl/h	Barrel pro Stunde		
25	bbl/d	Barrel pro Tag		
26	µgal/s	US-Mikrogallonen pro Sekunde		
27	mgal/s	US-Milligallonen pro Sekunde		
28	kgal/s	US-Kilogallonen pro Sekunde		
29	Mgal/s	US-Megagallonen pro Sekunde		
30	µgal/min	US-Mikrogallonen pro Minute		
31	mgal/min	US-Milligallonen pro Minute		
32	kgal/min	US-Kilogallonen pro Minute		
33	Mgal/min	US-Megagallonen pro Minute		
34	µgal/h	US-Mikrogallonen pro Stunde		
35	mgal/h	US-Milligallonen pro Stunde		
36	kgal/h	US-Kilogallonen pro Stunde		
37	Mgal/h	US-Megagallonen pro Stunde		
38	µgal/d	US-Mikrogallonen pro Tag		
39	mgal/d	US-Milligallonen pro Tag		
40	kgal/d	US-Kilogallonen pro Tag		

Tabelle B-2 Einheiten für Volumendurchfluss

Lfd. Nr.	Einheit	Beschreibung
41	µIMPGal/s	britische Mikrogallonen pro Sekunde
42	mImpGal/s	britische Milligallonen pro Sekunde
43	klmpGal/s	britische Kilogallonen pro Sekunde
44	MImpGal/s	britische Megagallonen pro Sekunde
45	µIMPGal/min	britische Mikrogallonen pro Minute
46	mImpGal/min	britische Milligallonen pro Minute
47	kImpGal/min	britische Kilogallonen pro Minute
48	MImpGal/min	britische Megagallonen pro Minute
49	µlmpGal/h	britische Mikrogallonen pro Stunde
50	mImpGal/h	britische Milligallonen pro Stunde
51	klmpGal/h	britische Kilogallonen pro Stunde
52	MImpGal/h	britische Megagallonen pro Stunde
53	µIMPGal/d	britische Mikrogallonen pro Tag
54	mlmpGal/d	britische Milligallonen pro Tag
55	klmpGal/d	britische Kilogallonen pro Tag
56	MimpGal/d	britische Megagallonen pro Tag
57	µbbl/s	Mikrobarrel pro Sekunde
58	mbbl/s	Millibarrel pro Sekunde
59	kbbl/s	Kilobarrel pro Sekunde
60	Mbbl/s	Megabarrel pro Sekunde
61	µbbl/min	Mikrobarrel pro Minute
62	mbbl/min	Millibarrel pro Minute
63	kbbl/min	Kilobarrel pro Minute
64	Mbbl/min	Megabarrel pro Minute
65	µbbl/h	Mikrobarrel pro Stunde
66	mbbl/h	Millibarrel pro Stunde
67	kbbl/h	Kilobarrel pro Stunde
68	Mbbl/h	Megabarrel pro Stunde
69	µbbl/d	Mikrobarrel pro Tag
70	mbbl/d	Millibarrel pro Tag
71	kbbl/d	Kilobarrel pro Tag
72	Mbbl/d	Megabarrel pro Tag
73	µm³/s	Kubikmikrometer pro Sekunde
74	mm³/s	Kubikmillimeter pro Sekunde
75	km³/s	Kubikkilometer pro Sekunde
76	Mm³/s	Kubikmegameter pro Sekunde
77	µm³/min	Kubikmikrometer pro Minute
78	mm ³ /min	Kubikmillimeter pro Minute
79	km³/min	Kubikkilometer pro Minute
80	Mm ³ /min	Kubikmegameter pro Minute
81	µm³/h	Kubikmikrometer pro Stunde
82	mm³/h	Kubikmillimeter pro Stunde

Lfd. Nr.	Einheit	Beschreibung		
83	km³/h	Kubikkilometer pro Stunde		
84	Mm³/h	Kubikmegameter pro Stunde		
85	µm³/d	Kubikmikrometer pro Tag		
86	mm³/d	Kubikmillimeter pro Tag		
87	km³/d	Kubikkilometer pro Tag		
88	Mm ³ /d	Kubikmegameter pro Tag		
89	cm ³ /s	Kubikzentimeter pro Sekunde		
90	cm ³ /min	Kubikzentimeter pro Minute		
91	cm ³ /h	Kubikzentimeter pro Stunde		
92	cm ³ /d	Kubikzentimeter pro Tag		
93	kl/min	Kiloliter pro Minute		
94	kl/h	Kiloliter pro Stunde		
95	kl/d	Kiloliter pro Tag		
96	ml/min	Milliliter pro Minute		
97	ft³/s	Kubikfuß pro Sekunde		
98	ft ³ /min	Kubikfuß pro Minute		
99	ft³/h	Kubikfuß pro Stunde		
100	ft³/d	Kubikfuß pro Tag		
101	in ³ /s	Kubikzoll pro Sekunde		
102	in³/min	Kubikzoll pro Minute		
103	in³/h	Kubikzoll pro Stunde		
104	in³/d	Kubikzoll pro Tag		
105	MI/s	Megaliter pro Sekunde		
106	MI/min	Megaliter pro Minute		
107	MI/h	Megaliter pro Stunde		
108	MI/d	Megaliter pro Tag		

Tabelle B-3 Dichte-Einheiten

Lfd. Nr.	Einheit	Beschreibung
00	kg/m ³	Kilogramm pro Kubikmeter
01	Mg/m ³	Megagramm pro Kubikmeter
02	kg/dm ³	Kilogramm pro Kubikdezimeter
03	g/cm ³	Gramm pro Kubikzentimeter
04	g/m³	Gramm pro Kubikmeter
05	t/m ³	metrische Tonnen pro Kubikmeter
06	kg/l	Kilogramm pro Liter
07	g/ml	Gramm pro Milliliter
08	g/l	Gramm pro Liter
09	lb/in ³	Pfund pro Kubikzoll
10	lb/ft ³	Pfund pro Kubikfuß

Lfd. Nr.	Einheit	Beschreibung	
11	lb/gal	Pfund pro US-Gallone	
12	STONS/yd ³	amerikanische Tonnen pro Kubikyard (1 STons = 2000 Pfund)	
13	mg/l	Milligramm pro Liter	
14	μg/l	Mikrogramm pro Liter	
15	mg/dm ³	Milligramm pro Kubikdezimeter	
16	mg/l	Milligramm pro Liter (nicht in neuen Projekten verwenden)	
17	mg/m ³	Milligramm pro Kubikmeter	
18	lb/m ³	Pfund pro Kubikmeter	
19	kg/ft ³	Kilogramm pro Kubikfuß	
20	t/ft ³	metrische Tonnen pro Kubikfuß	
21	mg/ft ³	Milligramm pro Kubikfuß	
22	g/ft ³	Gramm pro Kubikfuß	
23	kg/in ³	Kilogramm pro Kubikzoll	
24	t/in ³	Tonnen pro Kubikzoll	
25	mg/in ³	Milligramm pro Kubikzoll	
26	lb/in ³	Pfund pro Kubikzoll	
27	kg/cm ³	Kilogramm pro Kubikzentimeter	
28	t/cm ³	metrische Tonnen pro Kubikzentimeter	
29	lb/cm ³	Pfund pro Kubikzentimeter	
30	mg/cm ³	Milligramm pro Kubikzentimeter	

Tabelle B-4 Temperatureinheiten

Lfd. Nr.	Einheit	Beschreibung		
00	К	Kelvin		
01	°C	Grad Celsius		
02	°F	Grad Fahrenheit		

Tabelle B-5 Masseeinheiten

Lfd. Nr.	Einheit	Beschreibung
00	kg	Kilogramm
01	g	Gramm
02	mg	Milligramm
03	Mg	Megagramm
04	t	metrische Tonne
05	oz	Unze
06	lb	Pfund (Masse)
07	STONS	amerikanische Tonnen (2000 Pfund)
08	LTONS	britische Tonnen (2240 Pfund)

Lfd. Nr.	Einheit	Beschreibung		
00	m ³	Kubikmeter		
01	dm ³	Kubikdezimeter		
02	cm ³	Kubikzentimeter		
03	mm ³	Kubikmillimeter		
04	1	Liter		
05	cl	Zentiliter		
06	ml	Milliliter		
07	hl	Hektoliter		
08	in ³	Kubikzoll		
09	ft ³	Kubikfuß		
10	yd ³	Kubikyard		
11	gal	US-Gallone		
12	ImpGal	britische Gallone		
13	bushel	Bushel		
14	bbl	Barrel (42 US-Gallonen)		
15	bbl (liq)	Barrel Liquid (31,5 US-Gallonen)		
16	КІ	Kiloliter		
17	MI	Megaliter		
18	Mgal	US-Megagallone		
19	MImpGal	britische Megagallone		
20	Mkgal	US-Kilogallone		
21	MImpkGal	britische Kilogallone		

Tabelle B-6 Volumeneinheiten

Datensätze

Die unten aufgelisteten Datensätze werden in den folgenden Abschnitten detailgenau beschrieben.

DS Nr.	Inhalt	R/W (Lesen/ Schreiben)	Beschreibung
Befe	hle		
	DB_Length		Länge des DB
	Max. Lifebit-Zyklus		Lifebit-Überwachung
	SFB-Fehlercode		Kommunikationsfehler RET_VAL SFB 52/53
	Alle Aufrufparameter von FB95		Siehe Abschnitt zum Gebrauch in SIMATIC S7, Kommunikation mit der Funktionsbaugruppe
Para	meter		
2	Einheiten	R/W	Einstellungen für Einheiten
3	Grundparameter	R/W	Einstellungen für Grundeinstellungen
4	Parameter Summenzähler	R/W	Einstellungen für Summenzähler 1 + 2
5	Parameter Digitalausgang	R/W	Einstellungen für Digitalausgang
6	Parameter Digitaleingang	R/W	Einstellungen für Digitaleingang
7	COM Schnittstellenparameter	R/W	Einstellungen für P-Bus und RS 485-Schnittstelle
8	Datums- und Uhrzeitparameter	R/W	Einstellungen für Datum und Uhrzeit
9	Parameter Messaufnehmereigenschaften	R/W	Einstellungen der Messaufnehmereigenschaften
10	Simulationsparameter	R/W	Einstellungen der Simulationswerte
11	Parameter Prozessvoreinstellungen	R/W	Einstellen der Prozessstandardeinstellungen
12	Grenzparameter	R/W	Einstellen der Grenzstandardeinstellungen
39	CT-Parameter	R/W	Einstellungen von CT-Parametern
Proz	ess, Service, Produktdaten		
30	Durchflussmesser Prozessinformationen	R	Aktuelle Prozessdaten
31	Serviceinformationen	R	Service-Informationsdaten
32	Messumformer-Informationen	R	Messumformer-Daten
33	Messaufnehmer-Informationen	R	Messaufnehmer-Daten
34	Kunden-Informationen	R	Kunden-Daten
35	MODBUS ID-Informationen	R	MODBUS Daten
36	MODBUS Serviceinformationen	R	MODBUS Daten
37	CT-Werte	R	CT-Daten

Tabelle C-1 Datensätze im Datenbaustein DB_FLOW_PARA

C.1 DR2 Einheiten der Prozesswerte (R/W)

Hinweis

Mindest-/Höchstwerte werden zur besseren Übersicht in den Tabellen aufgeführt. Die Beziehung zwischen einem Datensatz und seinen zugehörigen Mindest-/Höchstwerten ist folgendermaßen:

- Mindestwerte: DR Nr. + 40 entspricht dem zugehörigen "Mindest-"Datensatz
- Höchstwerte: DR Nr. + 80 entspricht dem zugehörigen "Höchst"-Datensatz.

Beispiel: für DR 4 befinden sich die Mindestwerte in DR 44 und die Höchstwerte in DR 84.

Die Mindest-/Höchstwerte sind lediglich baugruppeninterne Werte, d. h., das Anwenderprogramm hat keinen Zugriff auf die Mindest-/Höchstdatensätze.

Hinweis

Von den Messaufnehmer-Abmessungen abhängige Parameter werden aus dem SENSORPROM[®] gelesen.

C.1 DR2 Einheiten der Prozesswerte (R/W)

Alle Einheiten werden in der "Einheitentabelle" (Seite 205) beschrieben.

Offset im DB_FLOW _PARA	MODB US- Adress e	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
80.0		Einheiten des Prozesswerts		STRUCT	Einheiten-ID (Standardeinheit)
80.0	2904	massflow_unit	Einheit Massedurchfl uss	BYTE (1)	0 27 kg/s Standardeinstellung = 0 kg/s
81.0	2906	volumeflow_uni t	Einheit Volumendurc hfluss	BYTE (1)	0 108 m³/s Standardeinstellung = 0 m³/s
82.0	2916	density_unit	Einheit Dichte	BYTE (1)	0 29 kg/m ³ Standardeinstellung = 0 kg/ m ³
83.0	4110	temparature_un it	Einheit Temperatur	BYTE (1)	0 2 °C Standardeinstellung = 1 °C

Tabelle C-2 Einheiten der Prozesswerte (alle Einheiten auf Basis von SI-Standardeinheiten)

Datensätze

C.1 DR2 Einheiten der Prozesswerte (R/W)

Offset im DB_FLOW _PARA	MODB US- Adress e	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
80.0		Einheiten des Prozesswerts		STRUCT	Einheiten-ID (Standardeinheit)
84.0	2908	fraction_unit	Einheit Fraktion	BYTE (1)	 Wertebereich abhängig von DR33: fraction_value_ selection DR33: fraction_value_ selection = 0 -> Bereich = 0 27 (Massedurchfluss, kg/s)
					 DR33: fraction_value_ selection = 1 -> Bereich = 0 108 (Volumendurchfluss, m³/s) Standardeinstellung = 0 kg/s
85.0	2912	totalizer_1_unit	Einheit Summenzähl er 1	BYTE (1)	Wertebereich abhängig von DR4: totalizer_1_selection und DR33: fraction_value_ selection
					 DR4: totalizer_1_selection = 1 -> Bereich = 0 8 (Masse, kg)
					 DR4:totalizer_1_selection = 2 oder 3 und DR33:fraction_value_selection = 0 -> Bereich = 0 8 (Masse, kg)
					 DR4:totalizer_1_selection = 2 oder 3 und DR33:fraction_value_selection = 1 -> Bereich = 0 21 (Volumen, m³)
					 DR4:totalizer_1_selection = 4 -> Bereich = 0 21 (Volumen, m³) Standardeinstellung = 0 kg
86.0	2914	totalizer_2_unit	Einheit Summenzähl er 2	BYTE (1)	Wertebereich abhängig von DR4: totalizer_2_selection und DR33: fraction_value_selection
					 DR4: totalizer_2_selection = 1 -> Bereich = 0 8 (Masse, kg)
					 DR4: totalizer_2_selection = 2 oder 3 und DR33: fraction_value_selection = 0 -> Bereich = 0 8 (Masse, kg)
					 DR4: totalizer_2_selection = 2 oder 3 und DR33: fraction_value_selection = 1 -> Bereich = 0 21 (Volumen, m³)
					 DR4: totalizer_2_selection = 4 -> Bereich = 0 21 (Volumen, m³) Standardeinstellung = 0 kg

Datensätze

C.1 DR2 Einheiten der Prozesswerte (R/W)

Offset im DB_FLOW _PARA	MODB US- Adress e	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
80.0		Einheiten des Prozesswerts		STRUCT	Einheiten-ID (Standardeinheit)
87.0	2918	batch_unit	Batch-Einheit	BYTE (1)	Wertebereich abhängig von DR5: batch_value_selection und DR33: fraction_value_selection
					 DR5: batch_value_selection = 1-> Bereich = 0 8 (Masse, kg)
					 DR5: batch_value_selection = 2 oder 3 und DR33: fraction_value_selection = 0 -> Bereich = 0 8 (Masse, kg)
					 DR5: batch_value_selection = 2 oder 3 und DR33: fraction_value_selection = 1 -> Bereich = 0 21 (Volumen, m³)
					 DR5: batch_value_selection = 4 -> Bereich = 0 21 (Volumen, m³)
					Standardeinstellung = 0 kg
88.0	2920	pulse_amount_ unit	Einheit Impulsvolume n	BYTE (1)	Wertebereich abhängig von DR5: pulse_value_selection und DR33: fraction_value_selection
					 DR5: pulse_value_selection = 1-> Bereich = 0 8 (Masse, kg)
					 DR5: pulse_value_selection = 2 oder 3 und DR33: fraction_value_selection = 0 -> Bereich = 0 8 (Masse, kg)
					 DR5: pulse_value_selection = 2 oder 3 und DR33:fraction_value_selection = 1 -> Bereich = 0 21 (Volumen, m³)
					 DR5: pulse_value_selection = 4 -> Bereich = 0 21 (Volumen, m³)
					Standardeinstellung = 0 kg
89.0		reserve_1	Reserviert	BYTE (1)	
90.0		reserve_2	Reserviert	BYTE (1)	
91.0		reserve_3	Reserviert	BYTE (1)	

C.2 DR3 Grundeinstellungen (R/W)

C.2 DR3 Grundeinstellungen (R/W)

Tabelle C-3 Grundeinstellungen

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
92.0		Allgemeine Einstellungen		STRUCT	
92.0		reserve_1	Reserviert	BYTE (1)	
93.0		reserve_2	Reserviert	BYTE (1)	
94.0		reserve_3	Reserviert	BYTE (1)	
95.0	2029	empt_pipe_d et_on_off	Leerrohrerke nnung	BYTE (1)	Funktion zur Leerrohrerkennung Ein / Aus
					• 0= aus
					• 1= ein
					Standardeinstellung = 0
96.0	2027	empty_pipe_li mit	Leerrohrgren zwert	REAL (4)	Fehler falls Dichte geringer als Leerrohrgrenzwert
					• Min: -20000.0
					• Max: +20000.0
					Standardeinstellung = 500
					0.0 +20000,0 in Schritten von 0,1 [Einheit Dichte]
100.0	2025	low_flow_cut_ off	Schleichmen genunterdrü ckung	REAL (4)	Wenn der Massedurchfluss geringer als low_flow_cut_off * massflow_max ist, wird für ihn die Nullstellung erzwungen.
					• Min: 0
					• Max: 0.1
					Standardeinstellung = 0,015
104.0	2000	flow_direction	Strömungsri chtung	BYTE (1)	• 0= Negativ
					• 1= Positiv
					Standardeinstellung = 0
105.0	2030	noise_filter	Rauschfilter	BYTE (1)	1 = min 5 = max.
					Standardeinstellung = 4
106.0	2031	error_level	Fehlerniveau	BYTE (1)	SE und PE Fehlerfilter für Liste anliegender Fehler und Fehlerprotokollliste an MODBUS
					• 1= Fehler
					• 2= Wartungsanforderung
					• 3= Prüfen
					• 4= Außerhalb der Spezifikation
					Standardeinstellung = 1
					SE / PE Fehlerfilter wird nach Datenbankaktualisierung durch SENSORPROM aktiviert, alle vorherigen Fehler durchlaufen den Filter.
107.0		reserve_4	Reserviert	BYTE (1)	

Datensätze

C.2 DR3 Grundeinstellungen (R/W)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
92.0		Allgemeine Einstellungen		STRUCT	
108.0	2001	Massflow_ma x	Max. Massedurchf luss	REAL (4)	Abhängig von der Messaufnehmergröße
					Einheit: DR2: Einheit Massedurchfluss
					Bereich: MassflowScaleUpperMin … MassflowScaleUpperMax (kg/s)
					Standardeinstellung: 31,25 kg/s (Installation ohne SENSORPROM)
112.0	2003	volumeflow_ max	Max. Volumendur chfluss	REAL (4)	Abhängig von der Messaufnehmergröße
					Einheit: DR2: Einheit Volumendurchfluss
					Bereich: VolumeflowScaleUpperMin … VolumeflowScaleUpperMax (m³/s)
					Standardeinstellung = 0,001556 m ³ /s (Installation ohne SENSORPROM)
116.0	2011	density_max	Max. Dichte	REAL (4)	Einheit: DR2: Einheit Dichte
					• Min: -20000 kg/m ³
					• Max: +20.000 kg/m ³
					Standardeinstellung = 2.000 kg/ m ³
120.0	2015	sensor_temp erature_max	Max. Messaufneh mertemperat ur	REAL (4)	Abhängig von der Messaufnehmergröße
					Einheit: DR2: Einheit Temperatur
					• Min: -250 °C
					• Max: +250 °C
					Standardeinstellung = 180 °C (Installation ohne SENSORPROM)
124.0	2017	fraction_A_flo w_max	Max. Durchfluss Fraktion A	REAL (4)	Wertebereich abhängig von DR33: fraction_value_selection:
					 DR33: fraction_value_selection = 0 -> Bereich = MassflowScaleUpperMin MassflowScaleUpperMax (kg/s)
					 DR33: fraction_value_selection = 1 -> Bereich = VolumeflowScaleUpperMin VolumeflowScaleUpperMax (m³/s)
					Standardeinstellung = 31,25 kg/s oder 0,001556 m ³ /s (Installation ohne SENSORPROM)
128.0	2019	fraction_B_flo w_max	Max. Durchfluss Fraktion B	REAL (4)	Wertebereich abhängig von DR33: fraction_value_selection:
					 DR33: fraction_value_selection = 0 -> Bereich = MassflowScaleUpperMin MassflowScaleUpperMax (kg/s)
					 DR33: fraction_value_selection = 1 -> Bereich = VolumeflowScaleUpperMin VolumeflowScaleUpperMax (m³/s)
					Standardeinstellung = 31,25 kg/s oder 0,001556 m ³ /s (Installation ohne SENSORPROM)
C.2 DR3 Grundeinstellungen (R/W)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
92.0		Allgemeine Einstellungen		STRUCT	
132.0	2023	percent_fracti on_A_max	Max. Prozentsatz Fraktion A	REAL (4)	In der Anzeige und im Datensatz in %, z. B. Wert 80,1 = 80,1 % • Min: 0% • Max: +2900%
136.0	4102	Massflow_mi n	Min. Massedurchf luss	REAL (4)	Standardeinstellung = 100 Abhängig von der Messaufnehmergröße Einheit: DR2: Einheit Massedurchfluss Bereich: -MassflowScaleUpperMax MassflowScaleUpperMax (kg/s) Standardeinstellung = 0
140.0	4104	volumeflow_ min	Min. Volumendur chfluss	REAL (4)	Abhängig von der Messaufnehmergröße Einheit: DR2-> Einheit Volumendurchfluss Bereich: -VolumeflowScaleUpperMax VolumeflowScaleUpperMax (m ³ /s) Standardeinstellung = 0
144.0	2009	density_min	Min. Dichte	REAL (4)	Einheit: DR2: Einheit Dichte Min: -20000 Max: +20000 Standardeinstellung = 100
148.0	2013	sensor_temp erature_min	Min. Messaufneh mertemperat ur	REAL (4)	Abhängig von der Messaufnehmergröße Einheit: DR2-> Einheit Temperatur • Min: -250 °C • Max: +250 °C Standardeinstellung = -50 °C (Installation ohne SENSORPROM)
152.0	4106	fraction_A_flo w_min	Min. Durchfluss Fraktion A	REAL (4)	 Wertebereich abhängig von DR33: fraction_value_selection: DR33: fraction_value_selection = 0 -> Bereich = MassflowScaleUpperMin MassflowScaleUpperMax (kg/s) DR33: fraction_value_selection = 1 -> Bereich = VolumeflowScaleUpperMin VolumeflowScaleUpperMax (m³/s) Standardeinstellung = 0 kg/s

C.2 DR3 Grundeinstellungen (R/W)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
92.0		Allgemeine Einstellungen		STRUCT	
156.0	4108	fraction_B_flo w_min	Min. Durchfluss	REAL (4)	Wertebereich abhängig von DR33: fraction_value_selection:
			Fraktion B		 DR33: fraction_value_selection = 0 -> Bereich = MassflowScaleUpperMin MassflowScaleUpperMax (kg/s)
					 DR33: fraction_value_selection = 1 -> Bereich = VolumeflowScaleUpperMin VolumeflowScaleUpperMax (m³/s)
160.0	2021	percent_fracti on A min	Min. Prozentsatz	REAL (4)	In der Anzeige und im Datensatz in %, z. B. Wert 80,1 = 80.1 %
			Fraktion A		• Min: 0
					Max: Max. Prozentsatz Fraktion A
					Standardeinstellung = 0
164.0		reserve_5	Reserviert	ARRAY [0 1] (2)	
166.0	2035	35 zero_adjust_ti me	Nullpunktabg leichszeit	WORD (2)	Dauer des Nullpunktabgleichs in Sekunden (zum Fortschritt, siehe Fortschreiten des Nullpunktabgleichs in DR31 (Seite 242))
					• Min: 0
					• Max: 65535 s
					Standardeinstellung = 30
168.0	2038	zero_sigma_li mit	Zero Sigma Grenzwert	REAL (4)	Max. zulässiges Zero Sigma bei automatischer Nullpunkteinstellung
					Einheit: DR2: Einheit Massedurchfluss
					• Min: 0
					Max: FLT_MAX kg/s
					Standardeinstellung = (Ablesen von SENSORPROM)
172.0	4112	zero_offset_li	Nullpunkt-	REAL (4)	Abhängig von der Messaufnehmergröße
		mit	Grenzwert		Max. Nullpunkt Offset automatischer und manueller Nullpunktabgleich-Einstellwerte
					Einheit: DR2: Einheit Massedurchfluss
					• Min: 0
					Max: FLT_MAX kg/s
					Standardeinstellung = 250,0 (Installation ohne SENSORPROM)
176.0		reserve_6	Reserviert	ARRAY [0 1] (2)	

C.3 DR4 Summenzähler (R/W)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
92.0		Allgemeine Einstellungen		STRUCT	
178.0	640	tag	Тад	STRING (18)	Beliebiger 18 Zeichen langer String
198.0	5300	descriptor	Beschreiber	STRING (20)	Beliebige 20 Zeichen lange Zeichenfolge

C.3 DR4 Summenzähler (R/W)

Tabelle C-4 Summenzähler (R/W)

Offset im DB_FLO W_PAR A	MODB US- Adress e	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
220.0		Summenz ähler 1		STRUCT	
220.0	2100	totalizer_1 _selection	Auswahl Summenz ähler 1	BYTE (1)	 1 = Massendurchfluss 2 = Fraktion A 3 = Fraktion B 4 = Volumendurchfluss Standardeinstellung = 1
221.0	2101	totalizer_1 _direction	Richtung Summenz ähler 1	BYTE (1)	 0 = Negativ (Drehrichtungsumkehr: nur rückwärts) 1 = Positiv (Vorwärts: nur vorwärts) 2 = Ausgeglichen (Net: + wenn vorwärts / - wenn rückwärts) Standardeinstellung = 1
222.0	4204	totalizer_1 _fail_mode	Fehlermod us Summenz ähler 1	BYTE (1)	 Falls Namur-Fehlerklasse F (Seite 157) anliegend ist. 0 = STARTEN: Summierung mit Ist-Durchflusswert 1 = ANHALTEN: Summenzähler wird angehalten (wie Summenzähler anhalten) 2 = SPEICHER: Summierung mithilfe des letzten eingehenden Werts mit gutem Status Standardeinstellung = 1
223.0		reserve_1	Reserviert	BYTE (1)	
224.0	2102	rotalizer_2 _selection	Auswahl Summenz ähler 1	BYTE (1)	 1 = Massendurchfluss 2 = Fraktion A 3 = Fraktion B 4 = Volumendurchfluss Standardeinstellung = 1

C.3 DR4 Summenzähler (R/W)

Offset im DB_FLO W_PAR A	MODB US- Adress e	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
220.0		ähler 1		SIRUCI	
225.0 226.0	2103 4206	totalizer_2 _direction totalizer_2 _fail_mode	Richtung Summenz ähler 1 Fehlermod us Summenz	BYTE (1) BYTE (1)	 0 = negativ (Drehrichtungsumkehr: nur rückwärts) 1 = Positiv (Vorwärts: nur vorwärts) 2 = Ausgeglichen (Net: + wenn vorwärts / - wenn rückwärts) Standardeinstellung = 1 Falls Namur-Fehlerklasse F (Seite 157) anliegend ist. 0 = STARTEN: Summierung mit Ist-Durchflusswert 1 = HOLD: Summenzöhler wird angehalten (wie
Summenz ähler 1		BYTE (1)	 Summenzähler anhalten) 2 = MEMORY: Summierung mithilfe des letzten eingehenden Werts mit gutem Status Standardeinstellung = 1 		

C.4 DR5 Digitalausgang (R/W)

Tabelle C-5 Digitalausgang (R/W)

Offset im DB_FLO W_PARA	MODB US- Adress e	Parameter	Bezeichnun g	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
228.0		Digitalausgan g allgemein		STRUCT	
228.0	4300	dig_out_sf_re action	Digitalausg ang SF- Reaktion	BYTE (1)	 Reaktion des Digitalausgangs auf Systemfehler (SF): 0 = Keine spezielle Reaktion auf SF 1 = Ausgänge auf AUS setzen (Schalter des Ausgangstreibers 2 = Ausgänge auf EIN setzen 3 = Ausgang 1 auf max. Frequenz setzen, Ausgang 2 aus 4 = Ausgang 2 auf max. Frequenz setzen, Ausgang 1 aus Standardeinstellung = 0
229.0	2205	dig_out_func	Funktion Digitalausg ang	BYTE (1)	 0 = Aus 1 = Impuls 2 = Frequenz 3 = Redundanzimpuls 90° 4 = Redundanzfrequenz 90° 5 = Zweistufiger Batch 6 = Batch 7 = Redundanzimpuls 180° 8 = Redundanzfrequenz 180° Standardeinstellung = 0
230.0		reserve_1	Reserviert	ARRAY [0 1] (2)	
232.0	2206	pulse_value_s election	Auswahl des Impulswerts	BYTE (1)	 Nur aktiv bei Digitalausgangsfunktion Impuls: 1 = Massedurchfluss 2 = Fraktion A 3 = Fraktion B 4 = Volumendurchfluss Standardeinstellung = 1
233.0	4380	pulse_output_ polarity	Impulsausg ang- Polarität	BYTE (1)	 0 = offen, d. h. kein Strom bei Impuls (DO1 LED aus) 1 = geschlossen, d. h. Strom bei Impuls (DO1 LED ein) Standardeinstellung = 0

C.4 DR5 Digitalausgang (R/W)

Offset im DB_FLO W_PARA	MODB US- Adress e	Parameter	Bezeichnun g	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
228.0		Digitalausgan g allgemein		STRUCT	
234.0	2207	pulse_directio n	Impulsrichtu ng	BYTE (1)	 1 = Unidirektional 2 = Bidirektional Standardeinstellung = 1
235.0	2208	pulse_width	Impulsdaue r	BYTE (1)	• $0 = 64 \ \mu s$ • $1 = 130 \ \mu s$ • $2 = 260 \ \mu s$ • $3 = 510 \ \mu s$ • $4 = 1,0 \ m s$ • $5 = 2,0 \ m s$ • $6 = 4,1 \ m s$ • $7 = 8,2 \ m s$ • $8 = 16 \ m s$ • $9 = 33 \ m s$ • $10 = 66 \ m s$ • $11 = 130 \ m s$ • $12 = 260 \ m s$ • $13 = 520 \ m s$ • $14 = 1,0 \ s$ • $15 = 2,1 \ s$ • $16 = 4,2 \ s$ Standardeinstellung = 4
236.0	2290	pulse_mass_o r_vol_amnt	Masse oder Volumen pro Impuls	REAL (4)	Wertebereich abhängig von DR5: pulse_value_selection und DR2: pulse_amount_unit: Bereich 10 ⁻¹² 10 ⁸ kg bzw. 10 ⁻¹⁸ 100.000 m ³ Standardeinstellung = 6 kg
240.0	2210	frequency_val _sel	Auswahl des Frequenzw erts	BYTE (1)	 Nur aktiv bei Digitalausgangsfunktion Frequenz: 1 = Massedurchfluss 2 = Fraktion A Durchfluss 3 = Fraktion B Durchfluss 4 = Volumendurchfluss 5 = Messaufnehmertemperatur 6 = Dichte 7 = % Fraktion A Standardeinstellung = 1

C.4 DR5 Digitalausgang (R/W)

Offset im DB_FLO W_PARA	MODB US- Adress e	Parameter	Bezeichnun g	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
228.0		Digitalausgan g allgemein		STRUCT	
241.0	2211	frequency_dir ection	Frequenzric htung	BYTE (1)	 Richtung Frequenz 1 1 = Unidirektional (nur positiver Durchfluss) 2 = Bidirektional Standardeinstellung = 1
242.0	2212	frequency_ma x	Max. Frequenz	BYTE (1)	Frequenz Fmax. (50% Lastspiel): • 0 = 10 kHz • 1 = 5 kHz • 2 = 1 kHz • 3 = 500 Hz Standardeinstellung = 0
243.0		reserve_2	Reserviert	BYTE (1)	
244.0	2213	frequency_tim e_const	Frequenzze itkonstante	REAL (4)	Frequenz 1 Zeitkonstanten (verwendet zum Filtern/Glätten der Ausgangsfrequenz): 0 … 60,0 s in Schritten von 0,1 Sekunden Standardeinstellung = 5
248.0	2233	batch_val_sel	Auswahl des Batch- Werts	BYTE (1)	 Nur aktiv bei Digitalausgangsfunktion Batch (muss vor DR11: batch_quantity) eingestellt werden: 1 = Massedurchfluss 2 = Fraktion A 3 = Fraktion B 4 = Volumendurchfluss Standardeinstellung = 1
249.0	2246	batch_count_ up_down	Batch- Zähler auf- /abwärts	BYTE (1)	 0 = Abwärts (DR11: batch_quantity auf 0) 1 = Aufwärts (0 bis DR11: batch_quantity) Standardeinstellung = 0
250.0	4302	batch_output_ polarity	Batch- Ausgangsp olarität	BYTE (1)	 0 = Offen, d.h. kein Strom wenn Batch aktiv ist (DO1 LED aus) 1 = Geschlossen, d.h. Strom wenn Batch aktiv ist (DO1 LED ein) Standardeinstellung = 0
251.0	2240	batch_time_er r_on_off	Batchdauer bis Fehler ein/aus	BYTE (1)	 0 = Aus 1 = Ein Standardeinstellung = 0
252.0	2243	batch_overrun _on_off	Batchüberla uffehler ein/aus	BYTE (1)	 0 = Aus 1 = Ein Standardeinstellung = 0
253.0		reserve_3	Reserviert	BYTE (1)	

C.4 DR5 Digitalausgang (R/W)

Offset im DB_FLO W_PARA	MODB US- Adress e	Parameter	Bezeichnun g	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
228.0		Digitalausgan g allgemein		STRUCT	
254.0		reserve_4	Reserviert	ARRAY [0 1] (2)	
256.0	2241	batch_time_m ax	Maximale Batchdauer	REAL (4)	 Nur aktiv bei b_Batch_time_err_on_off = 1 Min: 0 Max: 360000 s Standardeinstellung = 1 Fehler PE29 PE_BATCH_TIMEOUT wird eingestellt, wenn batch_time_max vor Beendigung des Batch erreicht wird
260.0	2244	batch_overr_e rr_quant	Menge Batchüberla uffehler	REAL (4)	Nur aktiv bei b_Batch_overrun_err_on_off = 1 Einheit: kg oder m ³ in Abhängigkeit von batch_value_selection und batch_ unit • Min: 0 • Max: 9999999 Standardeinstellung = 0 Fehler PE30 PE_BATCH_OVERRUN wird gesetzt, wenn die Menge den Wert von DR11 -> batch_quantity um mehr als batch_overrun_error_quantity (Delta) überschreitet

C.5 DR6 Digitaleingang (R/W)

Tabelle C-6 Digitaleingang (R/W)

Offset in DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichn ung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
264.0		Digitaleingang allgemein		STRUCT	
264.0	4404	digital_input_sf _reaction	Digitalein gang SF- Reaktion	BYTE (1)	 Digitaleingang Reaktion mit Systemfehler (SF): 0 = Keine spezielle Reaktion mit SF 1 = Aus 2 = Ein Standardeinstellung = 0
265.0	2300	digital_input_fu nc	Digitale Eingangs funktion	BYTE (1)	 0 = Aus 1 = Batch starten (ansteigende Flanke) 2 = Batch stoppen (ansteigende Flanke) 3 = Batch starten / stoppen (Stufe: 1 = Start, 0 = Stopp) 4 = Batch anhalten/fortsetzen (Stufe: 1 = Anhalten, 0 = Fortsetzen) 5 = Summenzähler 1 rücksetzen (ansteigende Flanke) 6 = Summenzähler 2 zurücksetzen (ansteigende Flanke) 7 = Summenzähler T1 + T2 zurücksetzen (ansteigende Flanke) 8 = Nullpunkteinstellung (ansteigende Flanke) 9 = Frequenz am Ausgang erzwingen (Stufe: 1 = Erzwingen, 0 = Normal) 10 = Frequenz am Ausgang einfrieren (Stufe: 1 = Einfrieren, 0 = Normal) Standardeinstellung = 0
266.0	4400	input_filter_tim e	Eingangs filterzeit	BYTE (1)	 0 = Ohne Firmware-Filter 1 255 ms in Schritten von 1 ms Standardeinstellung = 0
267.0	4402	input_inversion	Eingangs invertieru ng	BYTE (1)	 0 = unverändert (3-30 V = Hoch; <3 V = Niedrig) 1 = invertiert (3-30 V = Niedrig; <3 V = Hoch) Standardeinstellung = 0
268.0	2302	force_frequenc y_output_value	Frequen zausgan gswert erzwinge n	REAL (4)	0% +125 % von DR5: frequency_max (auf Anzeige in %, im Datensatz als Faktor, z. B. 0,1 => 10 %). Standardeinstellung = 0 Für den Ausgang wird dieser Wert erzwungen, wenn digital_input_function auf Ausgang erzwingen eingestellt ist und der Digitaleingang Hohes Niveau annimmt, wenn input_inversion = 0

C.6 DR7 Schnittstellenparameter (R/W)

C.6 DR7 Schnittstellenparameter (R/W)

Offset in DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
272.0		SIMATIC P- Bus Schnittstelle		STRUCT	
272.0	4100	Standalone	Standalone	BYTE (1)	Hinweis: kann im Schreibschutzmodus geändert werden.• 0= Nein (SIMATIC Modus)
					 1= Ja (Standalone-Modus / alle Fehler gemäß fehlender S7 CPU gelöscht) Standardeinstellung = 0
273.0		reserve_1	Reserviert	BYTE (1)	
274.0	5000	s7_peri_output _var1_assignm ent	S7 Ausgangswe rt 1	WORD (2)	 Hinweis: kann im Schreibschutzmodus geändert werden. MODBUS-Adresse des Werts, die in s7_status_signals-> output_var_1_value angezeigt wird Min: 2 Max: 2 Standardeinstellung = 3000 (Massedurchfluss)
276.0	5002	s7_peri_output _var2_assignm ent	S7 Ausgangswe rt 2	WORD (2)	 Hinweis: kann im Schreibschutzmodus geändert werden. MODBUS-Adresse des Werts, die in s7_status_signals-> output_var_2_value angezeigt wird Min: 2 Max: 2 Standardeinstellung = 3002 (Volumendurchfluss)

Tabelle C-7 Schnittstellenparameter (R/W)

C.6 DR7 Schnittstellenparameter (R/W)

Offset in DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
272.0		SIMATIC P- Bus Schnittstelle		STRUCT	
278.0	5004	s7_pral0_assig nment	S7 Prozessalar m 0	WORD (2)	 Zuweisung Prozessalarm 0 (es dürfen nur gültige Werte eingestellt werden) Wert 0: Kein Prozessalarm (Standard) Wertebereich 1 – FFh: Fehlernr. bevorstehender Handling-Fehler, siehe Tabelle "Daten- und Bedienerfehler (Seite 162)" Wertebereich 100h – 17Fh: 100h + 0 1Fh: Bit Nr. bevorstehender Status-Flag, siehe Tabelle "Systemstatusinformationen (Seite 170)" Wertebereich 200h – 27Fh: 200h+ 0 1Fh: Bit Nr. ausgehender Status-Flag, siehe Tabelle "Systemstatusinformationen (Seite 170)" Wertebereich 300h – 37Fh: 300h+ 0 7Fh: Fehler-Nr. eingehender SE- oder PE-Fehler, siehe Tabelle "Messaufnehmer- und Prozessfehler (Seite 155)" Wertebereich 400h – 47Fh: 400h+ 0 7Fh: Fehler-Nr. ausgehender SE- oder PE-Fehler,
					siehe Tabelle "Messaufnehmer- und Prozessfehler (Seite 155)" Standardeinstellung = 0
280.0	5006	s7_pral1_assig nment	S7 Prozessalar m 1	WORD (2)	Hinweis: kann im Schreibschutzmodus geändert werden. Zuweisung Prozessalarm 1 dito Standardeinstellung = 0
282.0	5008	s7_pral2_assig nment	S7 Prozessalar m 2	WORD (2)	Hinweis: kann im Schreibschutzmodus geändert werden. Zuweisung Prozessalarm 2 dito Standardeinstellung = 0
284.0	5010	s7_pral3_assig nment	S7 Prozessalar m 3	WORD (2)	Hinweis: kann im Schreibschutzmodus geändert werden. Zuweisung Prozessalarm 3 dito
286.0	5012	s7_pral4_assig nment	S7 Prozessalar m 4	WORD (2)	Hinweis: kann im Schreibschutzmodus geändert werden. Zuweisung Prozessalarm 4 dito Standardeinstellung = 0
288.0	5014	s7_pral5_assig nment	S7 Prozessalar m 5	WORD (2)	Hinweis: kann im Schreibschutzmodus geändert werden. Zuweisung Prozessalarm 5 dito

C.6 DR7 Schnittstellenparameter (R/W)

Offset in DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
272.0		SIMATIC P- Bus Schnittstelle		STRUCT	
290.0	5016	s7_pral6_assig nment	S7 Prozessalar m 6	WORD (2)	Hinweis: kann im Schreibschutzmodus geändert werden. Zuweisung Prozessalarm 6 dito Standardeinstellung = 0
292.0	5018	s7_pral7_assig nment	S7 Prozessalar m 7	WORD (2)	Hinweis: kann im Schreibschutzmodus geändert werden. Zuweisung Prozessalarm 7 dito Standardeinstellung = 0
294.0		reserve_2	Reserviert	ARRAY [0 1] (2)	
296.0	5020	s7_lifebit_timeo ut	Lifebit Timeout S7	TIME	 Hinweis: kann im Schreibschutzmodus geändert werden. 0 = Lifebit Timeout aus 1 bis 100000 = Lifebit-Timeout ein ohne Timeout in (ms) Standardeinstellung = 0
300.0	529	modbus_baudr ate	MODBUS Baudrate	BYTE (1)	RS232 / RS485-Baudrate: • 0 = 1200 Bit/s • 1 = 2400 Bit/s • 2 = 4800 Bit/s • 3 = 9600 Bit/s • 4 = 19200 Bit/s (Standard) • 5 = 38400 Bit/s • 6 = 57600 Bit/s • 7 = 76800 Bit/s • 8 = 115200 Bit/s Standardeinstellung = 4
301.0	530	modbus_parity _fram	MODBUS Parität Framing	BYTE (1)	RS232 / RS485 Parität und Framing: • 0 = 8, E, 1 (Standard) • 1 = 8, O, 1 • 2 = 8, N, 2 • 3 = 8, N, 1 Standardeinstellung = 0

C.7 DR8 Tag/Uhrzeit (R/W)

Offset in DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
272.0		SIMATIC P- Bus Schnittstelle		STRUCT	
302.0	511	modbus_respo nse_timeou	MODBUS Reaktions- Time-Out	WORD (2)	Max. Reaktionszeit. Verwendet in zeitkritischen Anwendungen mit kurzen Zeitzyklen. Falls innerhalb des 'Reaktions-Time-Out' keine Reaktion erfolgt, wird der Exception Code 6 zurückgemeldet und die Anfrage muss erneut gesendet werden.
					Bereich: 100 25500 ms in Schritten von 1 ms Standardeinstellung = 10000
304.0	512	w_modbus_res ponse_delay	MODBUS Reaktionsver zögerung	WORD (2)	Minimale Zeit, ab der ein Slave nach dem Eingang einer Anforderung eine Antwort zurückmeldet. So können Daten an langsame Master geschickt werden, ohne deren Empfänger zu überlasten.
					Bereich: 0 255 ms in Schritten von 1 ms
					Standardeinstellung = 1
306.0	513	modbus_inter_f rame_space	MODBUS Interframe- Space	BYTE (1)	Der minimale Interframe-Space zwischen zwei aufeinander folgenden MODBUS RTU Meldungen
					Bereich: 3,5 25 Zeichen in Schritten von 0,1 Zeichen (35 = 3,5)
					Standardeinstellung = 35
307.0		reserve_3	Reserviert	BYTE (1)	

C.7 DR8 Tag/Uhrzeit (R/W)

Tabelle C-8 Datum und Uhrzeit (R/W)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
308.0	4004	date_and_time	Datum und Uhrzeit	DATE_AND_T IME (8)	 SIMATIC Datums- und Uhrzeitformat: Tag.Monat.Jahr Stunde:Minute:Sekunde Millisekunde Wochentag Standardeinstellung = 01.01.06 / 00:00:00 / 000 Mo

C.8 DR9 Messaufnehmereigenschaften (R/W)

C.8 DR9 Messaufnehmereigenschaften (R/W)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
316.0	2400	sensor_size	Nennweite Messaufne hmer	REAL (4)	Wert von SENSORPROM zur Angabe des Rohrdurchmessers (m)
					• Min: 0
					• Max: 9.9
220.0	2402	Collibration foo	Kalibriarup		Standardeinstellung = 0,033062
320.0	2402	tor	gsfaktor	KEAL (4)	Messaufnehmerspezifisch, bei werkseitiger Nasskalibrierung berechnet, in SENSORPROM gespeichert und auf der Messaufnehmerkennzeichnung angegeben.
					• Min: -10000
					• Max: +10000
					Standardeinstellung = 0,0001
324.0	2404	correction_fact or	Korrekturfa ktor	REAL (4)	Bereich: -FLT_MAXFLT_MAX (SIFLOW FC070 behandelt diesen Faktor als normale Zahl und nicht als Prozentwert, 1,0 im Gerät ist 100 %)
					Standardeinstellung = 1
328.0	2406	sensor_TC	Messaufne hmer- Temperatu	REAL (4)	Temperaturkoeffizient (%/C) für den jeweiligen Messaufnehmer; diese Angabe ist Bestandteil der Durchfluss-Kalibrierungsdaten.
			rkoeffizient		• Min: -0.8
					• Max: +0.8
					Standardeinstellung = -0,0005
					Ein Temperatursensor PT1000 wird am Messaufnehmer MASS2100 befestigt, und ein PT100 am MC2.
					Bei dieser Temperatur, bei welcher der Messaufnehmer montiert wird, ist der Messumformer in der Lage, Temperaturänderungen in den Messaufnehmern zu kompensieren.
332.0	2408	density_parm_ A	Dichtepara meter A	REAL (4)	Dichteparameter A ist eine Konstante, die sich unter der Dichtekalibrierung findet.
					Standard-Messaufnehmer ohne Dichtekalibrierung haben Mittelwerte, die im SENSORPROM gespeichert sind.
					Bereich: -FLT_MAX + FLT_MAX (Dichteeinheit)
					Standardeinstellung = -1000
336.0	2410	density_parm_ B	Dichtepara meter B	REAL (4)	Dichteparameter B ist eine Konstante, die sich unter der Dichtekalibrierung findet.
					Standard-Messaufnehmer ohne Dichtekalibrierung haben Mittelwerte, die im SENSORPROM gespeichert sind.
					Bereich: -FLT_MAX + FLT_MAX (Dichteeinheit)
					Standardeinstellung = - 1E8

Tabelle C-9 Messaufnehmereigenschaften (R/W)

C.8 DR9 Messaufnehmereigenschaften (R/W)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
340.0	2412	r_Density_TC	Temperatu rkoeffizient der Dichte	REAL (4)	Temperaturkoeffizient der Dichte %/°C Der Temperaturkoeffizient der Dichte ist Bestandteil der Dichtekalibrierungsdaten.
					Standard-Messaufnehmer ohne Dichtekalibrierung haben Mittelwerte, die im SENSORPROM gespeichert sind.
					• Min: -3.2
					• Max: +3.2
					Standardeinstellung = -0,0005
344.0	2414	density_offset	Dichte- Offset	REAL (4)	Diese Funktion ermöglicht Ihnen, bei der gemessenen Dichte (kg/m ³) einen Offset zu berücksichtigen.
					• Min: -9999.9999
					• Max: +9999.9999
					Standardeinstellung = 0
					Wenn der Durchflussmesser + 2 kg/m ³ mehr anzeigen soll, können Sie das Dichte-Offset im Menü 'Sensor' auf 02,000 Kg/ m ³ ändern
348.0	2416	density_factor	Dichtefakto r	REAL (4)	Dieser Faktor ermöglicht es dem Benutzer, eine Dichtekorrektur in % am Durchflussmessgerät durchzuführen.
					• Min: -9.999999
					• Max: +9.999999
					Standardeinstellung = 1
					Die SIFLOW FC070 behandelt diesen Faktor als absolute Zahl und nicht als Prozentwert: 1,0 im Gerät entspricht 100 %.
					Wenn Sie die Dichte im Durchflussmesser um +0,5 % ändern möchten, müssen Sie den Korrekturfaktor auf 1,005 ändern. Nach dem Wechsel zeigt der Durchflussmesser eine um 0,5 % höhere Dichte als zuvor an.

C.8 DR9 Messaufnehmereigenschaften (R/W)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
352.0	2418	fraction_factor	Fraktionsfa ktor	REAL (4)	 Fraktionsfaktor (= b Table Slope): Min: -9999.9999 Max: +9999.9999 Standardeinstellung = 1 Die SIFLOW FC070 behandelt diesen Faktor als absolute Zahl und nicht als Prozentwert: 1,0 im Gerät entspricht 100 %. Beispiel: Wenn man die prozentuale Konzentration im Durchflussmesser um +0,5 % verändern will, muss man den Fraktionsfaktor 'b' auf 1,005 verändern. Nach der Veränderung zeigt der Durchflussmesser eine um 0,5 % höhere Konzentration an als zuvor.
356.0	2421	fraction_offset	Fraktions- Offset	REAL (4)	Fraktions-Offset (= a) • Min: -9999.9999 • Max: +9999.9999 Standardeinstellung = 0

C.9 DR10 Simulationsdaten (R/W)

|--|

Offset im DB_FLO W PARA	MODBUS- Adresse	Parameter	Schild	Datentyp (Anzahl Bvtes)	Wertebereich und Beschreibung
360.0		Aktivieren		STRUCT	
360.0	4500	Simulation_ena ble	Simulation aktivieren	WORD (2)	 Simulation: 0 = deaktivieren 1= aktivieren Bit 00: simulation_value_massflow Bit 01: simulation_value_volumeflow Bit 02: simulation_value_density Bit 03: simulation_value_sensor_temperature Bit 04: frei Bit 05: frei Bit 06: simulation_value_fraction_a_percent Bit 07: simulation_value_output1 Bit 08: simulation_value_output2 Bit 09: simulation_value_input Bit 10: simulation_value_error_no Bit 11 15 nicht zugewiesen
362.0		reserve_1	Reserviert	ARRAY [0 1] (2)	
364.0	4502	simulation_valu e_massflow	Simulation Massedurchfl usswert	REAL (4)	Aktiv, wenn Simulation für Massedurchfluss aktiviert (Bit 0) Einheit: DR2: massflow_unit Bereich: DR3: massflow_min -20 % des Bereichs (max-min) DR3: massflow_max + 20 % des Bereichs (max-min) Standardeinstellung = 0
368.0	4504	simulation_valu e_volumeflow	Simulation Volumendurc hflusswert	REAL (4)	Aktiv, wenn Simulation für Volumendurchfluss aktiviert (Bit 1) Einheit: DR2: volumeflow_unit Bereich: DR3: volumeflow_min -20 % des Bereichs (max-min) DR3: volumeflow_max +20 % des Bereichs (max-min) Standardeinstellung = 0
372.0	4506	simulation_valu e_density	Simulation Dichtewert	REAL (4)	Aktiv, wenn Simulation für Dichte aktiviert (Bit 2) Einheit: DR2: density_unit Bereich: DR3: density_min -20 % des Bereichs (max-min) DR3: density_max+ 20 % des Bereichs (max-min) Standardeinstellung = 1000

C.9 DR10 Simulationsdaten (R/W)

Offset im DB_FLO W_PARA	MODBUS- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
360.0		Aktivieren		STRUCT	
376.0	4508	simulation_valu e_sensor_temp	Messaufneh mertemperatu	REAL (4)	Aktiv, wenn Simulation für Temperatur aktiviert (Bit 3)
		erature	rwert		Einheit: DR2: temperature_unit
			simulieren		Bereich: DR3: sensor_temperature_min – 20 % des Bereichs (max-min) DR3: sensor_temperature_max + 20 % des Bereichs (max-min)
					Standardeinstellung = 0
380.0	4514	simulation_valu e_percent_fract	Simulation Fraktion A in	REAL (4)	Aktiv, wenn Simulation für % Fraktion A aktiviert (Bit 6)
		ion_a	Prozent		Bereich: DR3: percent_fraction_a_min – 20 % des Bereichs (max-min) DR3: percent_fraction_a_max + 20 % des Bereichs (max-min)
					Standardeinstellung = 0
					Auf Anzeige und im Datensatz in %, z. B. Wert 80,1 = 80,1 %
384.0		reserve_2	Reserviert	BYTE (1)	
385.0		reserve_3	Reserviert	BYTE (1)	
386.0		reserve_4	Reserviert	BYTE (1)	
387.0	4516	simulation_valu e_output_1	Simulation Signal Ausgang 1	BYTE (1)	 Aktiv, wenn Simulation f ür Ausgang aktiviert (Bit 7) H ängt nicht von gew ählter Ausgangsfunktion in DR5 ab 0=Aus
					• 1=Ein
					• 2=Frequenz
					Standardeinstellung = 0
388.0	4518	simulation_valu e_output_1_fre	Simulation Frequenzaus	DWORD (4)	Aktiv, wenn simulation_value_output = Frequenz (Hz)
		quency	gang 1		• Min: 0
					• Max: 12500
					Standardeinstellung = 10000
392.0		reserve_5	Reserviert	BYTE (1)	
393.0		reserve_6	Reserviert	BYTE (1)	
395.0	4520	simulation_valu	Simulation	BYTE (1)	Aktiv, wenn Simulation für Ausgang aktiviert (Bit 8)
		e_output_2	Signal Ausgang 2		Hängt nicht von gewählter Ausgangsfunktion in DR5 ab
					• 0=Aus
					• 1=Ein
					• 2=Frequenz
					Standardeinstellung = 0

C.9 DR10 Simulationsdaten (R/W)

Offset im DB_FLO W_PARA	MODBUS- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
360.0		Aktivieren		STRUCT	
396.0	4522	simulation_valu e_output_2_fre	Simulation Frequenzaus	DWORD (4)	Aktiv, wenn simulation_value_output = Frequenz (Hz)
		quency	gang 2		• Min: 0
					• Max: 12500
					Standardeinstellung = 10000
400.0	4524	simulation_valu	Simulation	BYTE (1)	Aktiv, wenn Simulation für Eingang aktiviert (Bit 9)
		e_input	Eingangssign		• 0=niedrig (aus)
			a		• 1=hoch (ein)
					Standardeinstellung = 0
401.0	4526	simulation_valu e_error_no	Simulation Fehlernumme	BYTE (1)	Aktiv, wenn Simulation für error_no aktiviert (Bit 10)
			r		Bereich: 1 255 (nur SE- und PE-Fehler, keine HE-Fehler)
					Standardeinstellung = 1
402.0		reserve_8	Reserviert	ARRAY [0 1] (2)	

Siehe auch

Simulation (Seite 126)

C.10 DR11 Standardeinstellungen Prozesswert (R/W)

C.10 DR11 Standardeinstellungen Prozesswert (R/W)

Offset im DB_FLOW _PARA	MODBU S- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
404.0	2234	batch_quantity	Batch-Menge	REAL (4)	Einheit: Masse (kg) oder Volumen (m ³) in Abhängigkeit von batch_value_selection (siehe Tabelle "Datensatz 2" (Seite 212))
					Arbeitspunkt: gewünschte Batch-Menge
					• Min: 0
					• Max: 999999
					Standardeinstellung = 5
408.0	2236	batch_compen sation	Batch- Kompensieru ng	REAL (4)	Einheit: Masse (kg) oder Volumen (m³) in Abhängigkeit von batch_value_selection (siehe Tabelle "Datensatz 2" (Seite 212))
					Festgelegte zu addierende oder subtrahierende Menge zur Kompensierung von Ventilverzögerungen etc.
					• Min: -100
					• Max: +100
					Standardeinstellung = 0
412.0	2238	batch_lead_co nstant	Batch- Führungskon stante	REAL (4)	Dynamische Kompensierung der Batch-Menge
					Bereich: 0 16,77 s in Schritten von 0,001 Sekunden
					Standardeinstellung = 0
416.0	4304	batch_two_sta ge_level	Pegel	REAL (4)	Pegel Batch-Stufe zum Ausschalten Ausgang 2:
			zweistufiger Batch		Bereich: 0 +100 % in Schritten von 0,01 %
					Standardeinstellung: 0
					Erste Stufe falls zweistufiges Batching, z. B. Wert 80 = 80 % des gewählten Werts in Batch-Menge
420.0	4200	totalizer_1_pre	Sollwert	REAL (4)	Gemäß der gewählten Quelle:
		set_value	Summenzähl er 1		Einheit: DR2: massflow_unit oder DR2: volumeflow_unit
					Bereich: -FLT_MAX +FLT_MAX
					Standardeinstellung = 0
424.0	4202	totalizer_2_pre	Sollwert	REAL (4)	Gemäß der gewählten Quelle:
		set_value	Summerzähle		Einheit: DR2: massflow_unit oder DR2:
			12		
					Bereich: -FLI_MAX +FLI_MAX
128.0	2033	zero offect pr	Nullpupktkorr		Gemeldet in DP1: zero, offect value
420.U	2033	eset value	ektur-Sollwert	NEAL (4)	Finbeit: DP2: massflow_unit
					Bereich: $-FIT M\Delta X + FIT M\Delta X$
					Standardeinstellung = 0

Tabelle C- 11 Standardeinstellungen Prozesswert (R/W)

C.11 DR12 Grenzwerte Standardeinstellungen (R/W)

C.11 DR12 Grenzwerte Standardeinstellungen (R/W)

Offset im DB_FLO W_PARA	MODBUS- Adresse	Parameter	Bezeichnung	Datenty p (Anzahl	Wertebereich und Beschreibung
				Bytes)	
432.0		Grenzwert		STRUC T	
432.0	4600	limit1_selection	Auswahl Grenzwert 1	BYTE (1)	 0 = Aus 1 = Massedurchfluss 2 = Fraktion A 3 = Fraktion B 4 = Volumendurchfluss 5 = Messaufnehmertemperatur 6 = Dichte 7 = Summenzähler 1 8 = Summenzähler 2 9 = % Fraktion A
433.0	4602	limit1_direction	Richtung Grenzwert 1	BYTE (1)	 Standardeinstellung = 0 0 = unterer Grenzwert (Grenzwertstatus am Arbeitspunkt eingehend, vom Arbeitspunkt ausgehend + Hysterese) 1 = oberer Grenzwert (Grenzwertstatus am Arbeitspunkt eingehend, vom Arbeitspunkt ausgehend - Hysterese) Standardeinstellung = 0
434.0		reserve_1	Reserviert	ARRAY [0 1] (2)	
436.0	4604	limit1_setpoint	Sollwert Grenzwert 1	REAL (4)	Einheit: Wenn limit1_selection = Summenzähler x: [DR2: totalizer_x_unit] Alle anderen: [%] des Maximalwerts des ausgewählten Werts in limit1_selection (z. B. Wert 1 = 100 %) Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0,1 (HMI: 10%)
440.0	4606	limit1_hysteresi s	Hysterese Grenzwert 1	REAL (4)	Einheit: Wenn limit1_selection = Summenzähler x: [DR2: totalizer_x_unit] Alle anderen: [%] des Maximalwerts des ausgewählten Werts in limit1_selection (z. B. Wert 1 = 100 %) Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0,05 (HMI: 5%)

Tabelle C- 12 Standardeinstellungen mit Grenzwerten (R/W) (können im Schreibschutzmodus geändert werden)

C.11 DR12 Grenzwerte Standardeinstellungen (R/W)

Offset im DB_FLO W PARA	MODBUS- Adresse	Parameter	Bezeichnung	Datenty p (Anzahl	Wertebereich und Beschreibung
				Bytes)	
432.0		Grenzwert		STRUC T	
444.0	4700	limit2_selection	Auswahl	BYTE	• 0 = Aus
			Grenzwert 2	(1)	• 1 = Massedurchfluss
					• 2 = Fraktion A
					• 3 = Fraktion B
					• 4 = Volumendurchfluss
					• 5 = Messaufnehmertemperatur
					• 6 = Dichte
					• 7 = Summenzähler 1
					• 8 = Summenzähler 2
					• 9 = % Fraktion A
					Standardeinstellung = 0
445.0	4702	limit2_direction	Richtung Grenzwert 2	BYTE (1)	 0 = unterer Grenzwert (Grenzwertstatus am Arbeitspunkt eingehend, vom Arbeitspunkt ausgehend - Hysterese)
					 1 = oberer Grenzwert (Grenzwertstatus am Arbeitspunkt eingehend, vom Arbeitspunkt ausgehend + Hysterese)
					Standardeinstellung = 0
446.0		reserve_2	Reserviert	ARRAY [0 1] (2)	
448.0	4704	limit2_setpoint	Sollwert Grenzwert 2	REAL (4)	Einheit: Wenn limit2_selection = Summenzähler x: [DR2: totalizer_x_unit]
					Alle anderen: [%] des Maximalwerts des ausgewählten Werts in limit2_selection (z. B. Wert 1 = 100 %)
					Bereich: -FLT_MAX +FLT_MAX
					Standardeinstellung = 0,1 (HMI: 10%)
452.0	4706	limit2_hysteresi s	Hysterese Grenzwert 2	REAL (4)	Einheit: Wenn limit2_selection = Summenzähler x: [DR2: totalizer_x_unit]
					Alle anderen: [%] des Maximalwerts des ausgewählten Werts in limit2_selection (z. B. Wert 1 = 100 %)
					Bereich: -FLT_MAX +FLT_MAX
					Standardeinstellung = 0,05 (HMI: 5%)

C.11 DR12 Grenzwerte Standardeinstellungen (R/W)

Offset im DB_FLO	MODBUS- Adresse	Parameter	Bezeichnung	Datenty p	Wertebereich und Beschreibung
W_PARA				(Anzahl Bytes)	
432.0		Grenzwert		STRUC T	
456.0	4800	Limit3_selectio	Auswahl	BYTE	• 0 = Aus
		n	Grenzwert 3	(1)	• 1 = Massedurchfluss
					• 2 = Fraktion A
					• 3 = Fraktion B
					• 4 = Volumendurchfluss
					• 5 = Messaufnehmertemperatur
					• 6 = Dichte
					• 7 = Summenzähler 1
					• 8 = Summenzähler 2
					• 9 = % Fraktion A
					Standardeinstellung = 0
457.0	4802	limit3_direction	Richtung Grenzwert 3	BYTE (1)	 0 = unterer Grenzwert (Grenzwertstatus am Arbeitspunkt eingehend, vom Arbeitspunkt ausgehend - Hysterese)
					 1 = oberer Grenzwert (Grenzwertstatus am Arbeitspunkt eingehend, vom Arbeitspunkt ausgehend + Hysterese)
					Standardeinstellung = 0
458.0		reserve_3	Reserviert	ARRAY [0 1] (2)	
460.0	4804	limit3_setpoint	Sollwert Grenzwert 3	REAL (4)	Einheit: Wenn limit3_selection = Summenzähler x: [DR2: totalizer_x_unit]
					Alle anderen: [%] des Maximalwerts des ausgewählten Werts in limit13_selection (z. B. Wert 1 = 100 %)
					Bereich: -FLT_MAX +FLT_MAX
					Standardeinstellung = 0,1 (HMI: 10%)
464.0	4806	limit3_hysteresi s	Hysterese Grenzwert 3	REAL (4)	Einheit: Wenn limit1_selection = Summenzähler x: [DR2: totalizer_x_unit]
					Alle anderen: [%] des Maximalwerts des ausgewählten Werts in limit3_selection (z. B. Wert 1 = 100 %)
					Bereich: -FLT_MAX +FLT_MAX
					Standardeinstellung = 0,05 (HMI: 5%)

C.11 DR12 Grenzwerte Standardeinstellungen (R/W)

Offset im DB_FLO	MODBUS- Adresse	Parameter	Bezeichnung	Datenty p	Wertebereich und Beschreibung
				Bytes)	
432.0		Grenzwert		STRUC T	
468.0	4900	limit4_selection	Auswahl Limit 4	BYTE	• 0 = Aus
				(1)	• 1 = Massedurchfluss
					• 2 = Fraktion A Durchfluss
					• 3 = Fraktion B Durchfluss
					• 4 = Volumendurchfluss
					• 5 = Messaufnehmertemperatur
					• 6 = Dichte
					• 7 = Summenzähler 1
					• 8 = Summenzähler 2
					• 9 = % Fraktion A
					Standardeinstellung = 0
469.0	4902	limit4_direction	Richtung Limit 4	BYTE (1)	 0 = unterer Grenzwert (Grenzwertstatus am Arbeitspunkt eingehend, vom Arbeitspunkt ausgehend - Hysterese)
					 1 = oberer Grenzwert (Grenzwertstatus am Arbeitspunkt eingehend, vom Arbeitspunkt ausgehend + Hysterese)
					Standardeinstellung = 0
470.0		reserve_4	Reserviert	ARRAY [0 1] (2)	
472.0	4904	limit4_setpoint	Sollwert Limit 4	REAL (4)	Einheit: Wenn limit4_selection = Summenzähler x: [DR2: totalizer_x_unit]
					Alle anderen: [%] des Maximalwerts des ausgewählten Werts in limit4_selection (z. B. Wert 1 = 100 %)
					Bereich: -FLT_MAX +FLT_MAX
					Standardeinstellung = 0,1 (HMI: 10%)
476.0	4906	limit4_hysteresi s	Hysterese Grenzwert 3	REAL (4)	Einheit: Wenn limit4_selection = Summenzähler x: [DR2: totalizer_x_unit]
					Alle anderen: [%] des Maximalwerts des ausgewählten Werts in limit4_selection (z. B. Wert 1 = 100 %)
					Bereich: -FLT_MAX +FLT_MAX
					Standardeinstellung = 0,05 (HMI: 5%)

Siehe auch

Grenzwertüberwachung (Seite 125)

C.12 DR30 Prozesswert (R)

Tabelle C- 13 Prozesswert (R)

Offset im DB_FLO W_PARA	MODBUS- Adresse	Parameter	Schild	Datenty p (Anzahl Bytes)	Wertebereich und Beschreibung
480.0	4000	system_status	Systemstatus	DWORD (4)	32 Bit Systemstatus (siehe Tabelle "Systemstatusinformationen (Seite 170)"
484.0	3000	massflow	Massedurchflus s	REAL (4)	Einheit: DR2: massflow_unit Bereich: 0 27 kg/s
488.0	3002	Volumeflow	Volumendurchfl uss	REAL (4)	Einheit: DR2: volumeflow_unit Bereich: 0 109 m³/s
492.0	3004	density	Dichte	REAL (4)	Einheit: DR2: density_unit Bereich: 0 30 kg/m ³
496.0	3006	sensor_temper ature	Messaufnehmer temperatur	REAL (4)	Einheit: DR2: temperature_unit Bereich: 0 2 °C
500.0	3008	fraction_A_flow	Fraktion A Durchfluss	REAL (4)	Einheit: DR2: fraction_A_unit Bereich: 0 27 kg/s oder 109 m³/s
504.0	3010	fraction_B_flow	Fraktion B Durchfluss	REAL (4)	Einheit: DR2: fraction_B_unit Bereich: 0 27 kg/s oder 109 m³/s
508.0	3012	percent_fractio n_A	Prozent Fraktion A	REAL (4)	Einheit: %
512.0	3022	totalizer_1	Summenzähler 1	REAL (4)	Einheit: DR2: totalizer1_unit Bereich: 0 8 kg oder 21 m³
516.0	3024	totalizer_2_bat ch	Summenzähler 2	REAL (4)	Einheit: DR2: totalizer2_unit Bereich: 0 8 kg oder 21 m ³

C.13 DR31 Serviceinformationen (R)

C.13 DR31 Serviceinformationen (R)

	Tabelle C- 1	4 Serv	viceinform	ationen	(R)
--	--------------	--------	------------	---------	-----

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
520.0	4012	date_and_time	Datum und	DATE_AN	Datum und Uhrzeit Baugruppe:
			Uhrzeit	D_TIME (8)	Tag.Monat.Jahr Stunde:Minute:Sekunde Millisekunde Wochentag
					Standardeinstellung = 01.01.01/ 00:00:00 / 000 Mo
528.0	2700	operating_time _total	Gesamt- Betriebsdaue	DWORD (4)	Zähler zur Anzeige der Gesamtdauer, die die Baugruppe unter Strom stand
			r		Betriebsdauer [h] in Schritten von 1 Stunde
					Bereich: 0 136 Jahre
532.0	4002	operating_time _powerup	Betriebszeit seit	DWORD (4)	Zähler, der die Zeit seit dem letzten Einschalten anzeigt
			Netzeinschalt		Betriebsdauer [h] in Schritten von 1 Stunde
			ung		0 136 Jahre
536.0	2756	driver_signal	Treibersignal	REAL (4)	Ausgang Stromäquivalent an Treiberspule
540.0	2758	pickup_1_ampl itude	Sensor 1 Amplitude	REAL (4)	Sensor-Amplitude [V]
544.0	2760	pickup_2_ampl itude	Sensor 2 Amplitude	REAL (4)	Sensor-Amplitude [V]
548.0	2762	sensor_freque ncy	Sensorfreque nz	REAL (4)	
552.0	5500	transmitter_te	Messumform	REAL (4)	Messumformertemperatur im Gehäuse
		mperature	ertemperatur		• Min: -40
					• Max: +80 °C
556.0	5200	sensorprom_in	SENSORPR	BYTE (1)	SENSORPROM Installationsstatus (montiert):
		stalled	OM installiert		• 0 = Nein
					• 1 = Ja
					Standardeinstellung = 1
557.0		reserve_1	Reserviert	BYTE (1)	
558.0		reserve_2	Reserviert	ARRAY [0 1] (2)	
560.0	5502	zero_offset_val ue	Wert Nullpunktkorr ektur	REAL (4)	Wert Nullpunktkorrektur nach gültiger Nullpunkteinstellung oder nach CMD_ZERO_OFFSET_VALUE_PRESET
					Einheit: DR: massflow_unit
					Bereich: DR3: massflow_min DR3: massflow_max
564.0	3211	zero_adjust_pr ogress	Fortschreiten des Nullpunktabg leichs	REAL (4)	0 100 % als Faktor (-> 1,0 = 100 %)

C.14 DR32-34 Messumformer-, Messaufnehmer- und Kundendaten (R)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
568.0	2036	zero_sigma	Zero Sigma	REAL (4)	Einheit: DR2: massflow_unit Bereich: DR3: massflow_min … DR3: massflow_max
572.0	2249	batch_cycle_c ounter	Batch_cycle_ counter	DWORD (4)	Angesammelte Anzahl gestarteter Batches

C.14 DR32-34 Messumformer-, Messaufnehmer- und Kundendaten (R)

Tabelle C- 15 Messumformerdaten (R)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
576.0		Baugruppen- Firmware		STRUCT	
576.0	5100	fw_code_crc3 2	Firmware- Prüfsumme	DWORD (4)	Prüfsumme CRC32 des Codes Standardeinstellung = 0
580.0	5102	fw_code_leng th	Firmware-Größe	DWORD (4)	Anzahl an Bytes des Codes Standardeinstellung = 0
584.0	5104	fw_code_nam e	Codename Firmware	STRING (20)	Name des Codes: z.B.: "SIFLOW_FC_V1-0- 0.bin"
606.0	5114	fw_compilatio n_date	Firmware- Übersetzungsda tum	STRING (12)	Übersetzungsdatum: z. B. 01.01.2003
620.0	5120	fw_compilatio n_time	Firmware- Übersetzungsuh rzeit	STRING (10)	Übersetzungsuhrzeit: z. B. 12:30.59
632.0	2530	fw_version	Firmware- Version	STRING (10)	Version des Anwendungscodes: Vxx.yy.zz (ASCII)
					Byte 0 Versionsbuchstabe:
					Vor Freigabe zur Produktion A U = Version in Entwicklung
					Nach der Freigabe zur Produktion V = Standardversion zur Produktion
					W Z = Spezielle Kundenausführungen
					Byte 1+2 xx 0 99 Hauptfunktionsausführung
					Byte 4+5 yy 0 99 Ausführung für Unterfunktion oder Datenänderung
					Byte 7+8 zz 0 99 Ausführung zur Fehlerbeseitigung
644.0	5125	fw_licence_co ntrol	Kontrolle der Firmware-Lizenz	BYTE (4)	

C. 14 DR32-34 Messumformer-, Messaufnehmer- und Kundendaten (R)

Offset im DB_FLO W_PARA	MODBU S- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
576.0		Baugruppen- Firmware		STRUCT	
648.0	5128	bootsystem_v ersion	Version des Boot-Systems	STRING (10)	Version des Boot-Systems: z. B. 0001 (Daten vom Bootsektor) Standardeinstellung = 0
660.0	5127/60 5	transmitter_h w_ver	Hardwareversio n	WORD (2)	Version der Hardware (ES mit CADIM)
662.0	2500/61 3	transmitter_n ame	Name des Messumformers	STRING (20)	Baugruppenname
684.0	2510	transmitter_m lfb	MLFB des Messumformers	STRING (20)	 MLFB des Messumformers 7ME4 120-2DH20-0EA0 -> nicht-Ex 7ME4 120-2DH21-0EA0 -> Ex
706.0	2520	transmitter_s erial_number	Seriennummer Messumformer	STRING (20)	Seriennummer der Baugrupppe
728.0		reserve_1	Reserviert	ARRAY [0 1] (2)	

Tabelle C- 16 Messaufnehmerdaten (R)

Offset im DB_FLOW _PARA	MODBU S- Adresse	Parameter	Schild	Datentyp	Wertebereich und Beschreibung
730.0		Messaufnehme r		STRUCT	
730.0	2540	sensor_name	Name des Messaufnehmers	STRING (20)	Name des Messaufnehmertyps (z. B. "MASS2100")
752.0	2550	sensor_mlfb	MLFB des Messaufnehmers	STRING (20)	MLFB des Messaufnehmers
774.0	2560	sens_serial_nu mber	Seriennummer des Messaufnehmers	STRING (20)	Seriennummer des Messaufnehmers
796.0	2570	sensor_pipe_di ameter_text	Rohrdurchmesser des Messaufnehmers	STRING (20)	Rohrdurchmesser des Messaufnehmers
818.0	5202	fraction_calibra tion_X0	Fraktionskalibrier ung X0	REAL (4)	Fraktions-Kalibrierungskonstante X0 (unterbrechen)
					Bereich: -FLT_MAX +FLT_MAX
					Standardeinstellung = 1
822.0	5204	fraction_calibra	Fraktionskalibrier	REAL (4)	Fraktions-Kalibrierungskonstante X1
		tion_X1	ung X1		Bereich: -FLT_MAX +FLT_MAX
					Standardeinstellung = 0

C. 14 DR32-34 Messumformer-, Messaufnehmer- und Kundendaten (R)

Offset im DB_FLOW _PARA	MODBU S- Adresse	Parameter	Schild	Datentyp	Wertebereich und Beschreibung
730.0		Messaufnehme r		STRUCT	
826.0	5206	fraction_calibra tion_X2	Fraktionskalibrier ung X2	REAL (4)	Fraktions-Kalibrierungskonstante X2 Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0
830.0	5208	fraction_calibra tion_X3	Fraktionskalibrier ung X3	REAL (4)	Fraktions-Kalibrierungskonstante X3
834.0	5210	fraction_calibra tion_X4	Fraktionskalibrier ung X4	REAL (4)	Fraktions-Kalibrierungskonstante X4 Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0
838.0	5212	fraction_calibra tion_X5	Fraktionskalibrier ung X5	REAL (4)	Fraktions-Kalibrierungskonstante X5 Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0
842.0	5214	fraction_calibra tion_X6	Fraktionskalibrier ung X6	REAL (4)	Fraktions-Kalibrierungskonstante X6 Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0
846.0	5216	fraction_calibra tion_X7	Fraktionskalibrier ung X7	REAL (4)	Fraktions-Kalibrierungskonstante X7 Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0
850.0	5218	fraction_calibra tion_X8	Fraktionskalibrier ung X8	REAL (4)	Fraktions-Kalibrierungskonstante X8
854.0	5220	fraction_calibra tion_X9	Fraktionskalibrier ung X9	REAL (4)	Fraktions-Kalibrierungskonstante X9 Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0
858.0	5222	fraction_calibra tion_X10	Fraktionskalibrier ung X10	REAL (4)	Fraktions-Kalibrierungskonstante X10 Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0
862.0	5224	fraction_calibra tion_X11	Fraktionskalibrier ung X11	REAL (4)	Fraktions-Kalibrierungskonstante X11 Bereich: -FLT_MAX +FLT_MAX Standardeinstellung = 0
866.0	5226	fraction_a_text	Fraktion A Text	STRING (16)	
884.0	5232	fraction_b_text	Fraktion B Text	STRING (16)	
902.0	5240	fraction_value_ selection	Fraktionsauswahl	BYTE (1)	 0= Massedurchfluss 1= Volumendurchfluss Standardeinstellung = 0
903.0		reserve_1	Reserviert	BYTE (1)	
904.0		reserve_2	Reserviert	ARRAY [0 1] (2)	

C. 15 DR35-36 MODBUS Slave Identifikationsdaten und Serviceinformationen (R)

Offset im DB_FLOW_ PARA	MODBUS- Adresse	Parameter	Datenty p	Wertebereich und Beschreibung
906.0		Kunde	STRUC T	
906.0	2580	customer_code_ number	STRING (20)	Kundencodenummer
928.0		reserve_1	ARRAY [0 1] (2)	

Tabelle C- 17 Kundendaten (R)

C.15 DR35-36 MODBUS Slave Identifikationsdaten und Serviceinformationen (R)

Tabelle C- 18 Datensatz 35 (DR35) (R)

Offset im DB_F LOW _PAR A	MOD BUS- Adres se	Parameter	Schild.	Datentyp (Anzahl BYTE (1)s)	Wertebereich und Beschreibung
930.0	600	manufacturer_id	Hersteller-ID	BYTE (1)	Standardeinstellung = 0x2A (= SIEMENS)
931.0	602	product_code	Produktcode	BYTE (1)	Standardeinstellung = 26 = SIFLOW FC070
932.0	603	capability_bits_1	Capability-Bits 1	BYTE (1)	Standardeinstellung = 0 (= 0x03)
933.0	604	capability_bits_2	Capability-Bits 2	BYTE (1)	Standardeinstellung = 1 (= 0xFF)
934.0	605	capability_bits_3	Capability-Bits 3	BYTE (1)	Standardeinstellung = 2 (= 0x01)
935.0		reserve_1	Reserviert	BYTE (1)	
936.0	607	manufacturer_na me	Name des Herstellers	STRING (12)	Standardeinstellung = SIEMENS AG

C.15 DR35-36 MODBUS Slave Identifikationsdaten und Serviceinformationen (R)

Offset im DB_FL OW_PA RA	MODB US- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
950.0	528	device_addres s	MODBUS- Geräteadresse	BYTE (1)	1 247 (eingestellt mit DIP-Schalter oder DR0-> device_address, wenn DIP-Schalter=0) Standardeinstellung = 1
951.0		reserve_1	Reserviert	BYTE (3)	
954.0	507	inter_frame_sp ace_µs	Interframe- Space	DWORD (4)	Berechnet aus DR7->modbus_interframe_space
958.0	514	baudrate_hz	Baudrate	DWORD (4)	Berechnet aus DR7->modbus_baudrate
962.0	500	number_of_par ity_errors	Anzahl der Paritätsfehler	WORD (2)	
964.0	501	number_of_fra ming_errors	Anzahl der Framing-Fehler	WORD (2)	
966.0	503	number_of_crc _errors	Anzahl der CRC-Fehler	WORD (2)	
968.0	504	number_of_ok_ messages_rcv	Anzahl der OK- Meldungen	WORD (2)	Erhaltene OK-Meldungen
970.0	680	last_coil_error_ addr	Letzter Spulenfehler	WORD (2)	CoilAddr
972.0	681	last_coil_error_ no	Letzter Spulenfehler	WORD (2)	Fehlernummer
974.0	682	last_holdreg_er ror_addr	Letzter HoldReg-Fehler	WORD (2)	HoldReg Addr
976.0	683	last_holdreg_er ror_no	Letzter Hold- Register-Fehler	WORD (2)	Fehlernummer
978.0	3201	error_pending_ 1	Fehler anliegend 1	BYTE (1)	Nummer des ältesten Fehlers
979.0	3202	error_pending_ 2	Fehler anliegend 2	BYTE (1)	
980.0	3203	error_pending_ 3	Fehler anliegend 3	BYTE (1)	
981.0	3204	error_pending_ 4	Fehler anliegend 4	BYTE (1)	
982.0	3205	error_pending_ 5	Fehler anliegend 5	BYTE (1)	
983.0	3206	error_pending_ 6	Fehler anliegend 6	BYTE (1)	
984.0	3207	error_pending_ 7	Fehler anliegend 7	BYTE (1)	
985.0	3208	error_pending_ 8	Fehler anliegend 8	BYTE (1)	
986.0	3209	error_pending_ 9	Fehler anliegend 9	BYTE (1)	Nummer des neuesten Fehlers

Tabelle C- 19 Datensatz 36 (DR36) (R)

C.16 DR37 CT-Werte (R)

Offset im DB_FL OW_PA RA	MODB US- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
987.0	601	run_indicator	Laufanzeige	BYTE (1)	0 = AUS 0xFF = Aktiv
988.0		reserve_2	Reserviert	BYTE (2)	

C.16 DR37 CT-Werte (R)

Die Werte von Datensatz 37 sind verschlüsselt.

Tabelle C- 20 CT-Werte (R)

Offset in DB_FLOW_ PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
990	-	crypto_crc	Prüfsumme CRC16 von Byte 2 bis 31	WORD (2)	
992		Status	Bit 0 5: Zähler aktualisieren (0 63) Bit 6 15: Status	WORD (2)	
994	-	Random	Zufallszahl für Überprüfung	WORD (2)	
996	-	Control	Kontrollzahl für Überprüfung	WORD (2)	
998	-	process_value_ 1	Erster kalibrierter Prozesswert	REAL (4)	
1002	-	process_value_ 2	Zweiter kalibrierter Prozesswert	REAL (4)	
1006	-	pv_1_unit_ID	Einheiten-ID für ersten CT- Wert	WORD (2)	
1008	-	pv_2_unit_ID	Einheiten-ID für zweiten CT-Wert	WORD (2)	
1010	-	Reserve	Reserviert	BYTE (2)	
1012	-	serial_number	Baugruppens pezifische Seriennumme r	BYTE (10)	

C.17 CT-Parameter von DR39 (R/W)

C.17 CT-Parameter von DR39 (R/W)

Tabelle C- 21 CT-Parameter (R/W)

Offset in DB_FLOW_ PARA	MODBU S- Adresse	Parameter	Bezeichnung	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
1022	5504	ocx_version_typ e	Prüfsumme CRC16 von Byte 2 bis 31	STRING (3)	
1025	-	reserve39_1	Bit 0 5: Zähler aktualisieren (0 63) Bit 6 15: Status	BYTE (1)	
1026	5505	Process_value_ 1_ID	Zufallszahl für Überprüfung	BYTE (1)	Selektor für zweite Prozessdaten 0 = Volumendurchfluss 1 = Massedurchfluss 2 = Durchfluss Fraktion A 3 = Durchfluss Fraktion B 4 = Dichte 5 = Zähler 1 6 = Zähler 2 7 = Kein Prozesswert ausgewählt 255 = CT-Modus deaktiviert
1027	5506	Process_value_ 2_ID	Kontrollzahl für Überprüfung	BYTE (1)	Selektor für zweite Prozessdaten 0 = Volumendurchfluss 1 = Massedurchfluss 2 = Durchfluss Fraktion A 3 = Durchfluss Fraktion B 4 = Dichte 5 = Zähler 1 6 = Zähler 2 7 = Kein Prozesswert ausgewählt 255 = CT-Modus deaktiviert
1028	5507	ocx_main-nr	Erster kalibrierter Prozesswert	WORD (2	
1030	5508	Ocx_sub-nr	Zweiter kalibrierter Prozesswert	WORD (2	

C.18 DR181 Diagnosepuffer (R)

C.18 DR181 Diagnosepuffer (R)

Offset im DB_FLOW _PARA	MODBUS- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung
		szl_id	SZL-ID	WORD (2)	(SZL-TL 00A0) Standardeinstellung = 0x00A0
		last_index	Letzter Indexeintrag	WORD (2)	Referenzen zum letzten Eintrag in dia_elem_info[x], siehe unten stehende Tabelle.
					Index = 0: 1. Eintrag (= dia_elem_info[0]) Index = 1: 2. Eintrag (= dia_elem_info[1]) usw.
		dia_elem_len	Länge der Diagnoseinf ormation	WORD (2)	Länge einer Diagnoseinformation Standardeinstellung = 20
		dia_elem_count	Diagnoseinf ozähler	WORD (2)	Anzahl an Einträgen in dia_elem_info[x]; Bereich: 0 9 0 = kein Eintrag
	5400	dia_elem_info	Diagnoseinf o	BYTE [9][20] (180)	Diagnoseinfo: Die letzten 9 nicht gefilterten (DR3.error_level) Diagnoseinformationen, siehe unten stehende Tabelle

Tabelle C- 22 Diagnosespeicher (DR 181)

C.18 DR181 Diagnosepuffer (R)

MODBUS- Adresse	Parameter	Schild	Datentyp (Anzahl Bytes)	Wertebereich und Beschreibung	
	de_class	Fehlerklasse	WORD (2)	Detaillierter Fehlerereignisstatus und -klasse: 0xF(K)60 K:	
				 Bit 0: C / G (C = 1 / G = 0) Fehlerstatus: eingehend oder ausgehend 	
				• Bit 1: 0	
				• Bit 2: interner Fehler (S7-Klasse)	
				Bit 3: externer Fehler (S7-Klasse)	
				Standardeinstellung = 0	
	de_number	Fehlernumme r	WORD (2)	Detaillierte Fehlerereignisnummer (Nummer = 0x1000 0x12FF),	
				individuelle Fehlerereignisnummern siehe Tabellen "Messaufnehmer- und Prozessfehler (Seite 158)" und "Handling-Fehler":	
				• 0x10** PE / SE	
				• 0x11** HE	
				Standardeinstellung = 0	
	info4	Fehlerquelle	BYTE (1)	Fehlerquelle	
				 1 = intern (Quelle ist die Baugruppe selbst oder SENSORPROM oder ConverterPROM) 	
				• 2 = SIMATIC (P-Bus / Befehl oder Parameter)	
				 3 = MODBUS (RS232 oder RS485 / Befehl oder Parameter) 	
				4 = Digitaleingang (Befehl)	
				• 5 = Simulation	
				6 127 reserviert	
				Standardeinstellung = 0	
	info5	Fehlertyp	BYTE (1)	SIFLOW Fehlertyp; siehe Tabelle SIFLOW FC070 Fehlertypen (Seite 157)	
				Standardeinstellung = 0	
	Info1	NAMUR-	WORD (2)	Siehe Tabelle NAMUR VDI 2650 Klassen (Seite 157)	
		Fehlerklasse		Standardeinstellung = 0	
	Info2		WORD (2)	Zusätzlicher Fehlercode	
				Standardeinstellung = 0	
	Info3		WORD (2)	Frei	
				Standardeinstellung = 0	
	Date_and_time	and_time Datum und Uhrzeit	DATE_AND_T IME (8)	Zeitstempel	
				Standardeinstellung = 0	

C.18 DR181 Diagnosepuffer (R)
D

CT-Parameter

D.1 Redundanzimpulsausgang

90°/180°

Parametername (PDM)	Parametername (SIFLOW)	Kommentar
Operating Conditions \ Correction Factor	DR9 Sensor properties\ correction_factor	Dieser Faktor ermöglicht dem Anwender, eine Durchflusskorektur in % des Durchflussmessgeräts durchzuführen.
		Werkseitig ist der Korrekturfaktor auf 1,0000 festgelegt.
		Durchflussrate (kg/h) = Korrekturfaktor x Durchflussrate (kg/h).
		Wenn der Durchfluss im Durchflussmessgerät um +0,5 % ansteigt, muss der Korrekturfaktor auf 1,005 geändert werden.
		Nach der Änderung zeigt der Durchflussmesser für alle mit dem Durchfluss in Zusammenhang stehenden Werte eine um 0,5 % höhere Durchflussrate an als zuvor.
Digital output \ Digital output	DR5 Digital output\ dig_out_func	Aus: Ausgänge 1 und 2 sind deaktiviert.
		Redundanzimpuls 90° / 180°
Digital output \ Measurement Function	DR5 Digital output\ pulse_value_selection	Masse (Durchfluss) Fraktion A Fraktion B Volumen (Durchfluss)
Digital output \ Unit	DR2 Units of the process values\ pulse_amount_unit	Dient zur Auswahl der Einheit für Masse/Impuls oder Volumen/Impuls
Digital output \ Volume/pulse	DR5 Digital output \ pulse_mass_or_vol_amnt	Gibt den Betrag von Masse/Volumen je Impuls an
Digital output \ Pulse Output Direction	DR5 Digital output \ pulse_direction	Nur eine Richtung: Der Ausgang gibt nur Impulse aus, wenn der gemessene Durchfluss positiv ist.
		Beide Richtungen: Der Ausgang gibt in beiden Fällen Impulse aus, unabhängig von der Richtung des gemessenen Durchflusses
Digital output \ Pulse Width	DR5 Digital output \ pulse_width	Impulsdauer des Digitalausgangs.
		Kann entsprechend den Wertevorgaben des Impulszählers eingestellt werden

CT-Parameter

D.1 Redundanzimpulsausgang

Parametername (PDM)	Parametername (SIFLOW)	Kommentar
Digital output \ Pulse Polarity	DR5 Digital output \ pulse_output_polarity	Zustand des passiven Ausgangsschalters:
		Schließerkontakt, wenn kein Impuls = kein Strom, Spannung niedrig.
		Öffnerkontakt, wenn kein Impuls = Strom, Spannung hoch.
Digital output \ SF reaction	DR5 Digital output \ dig_out_sf_reaction	Reaktion des Digitalausgangs auf Systemfehler (SF):
		0 = keine spezielle Reaktion auf SF 1 = Ausgänge auf Aus setzen 2 = Ausgänge auf Ein setzen
OCX \ Process Value 1 ID	DR39 CT parameters \ Process_value_1_ID	Dieser Wert muss wie folgt gesetzt werden: Kein Prozesswert ausgewählt
OCX \ Process Value 2 ID	DR39 CT parameters \ Process_value_2_ID	Dieser Wert muss wie folgt gesetzt werden: Kein Prozesswert ausgewählt

D.2 Redundanzfrequenzausgang

D.2 Redundanzfrequenzausgang

90°/180°

Parametername (PDM)	Parametername (SIFLOW)	Kommentar
Operating Conditions \ Correction Factor	DR9 Sensor properties\ correction_factor	Dieser Faktor ermöglicht dem Anwender, eine Durchflusskorektur in % des Durchflussmessgeräts durchzuführen.
		Werkseitig ist der Korrekturfaktor auf 1,0000 festgelegt.
		Durchflussrate (kg/h) = Korrekturfaktor x Durchflussrate (kg/h).
		Wenn der Durchfluss im Durchflussmessgerät um +0,5 % ansteigt, muss der Korrekturfaktor auf 1,005 geändert werden.
		Nach der Änderung zeigt der Durchflussmesser für alle mit dem Durchfluss in Zusammenhang stehenden Werte eine um 0,5 % höhere Durchflussrate an als zuvor.
Digital output \ Digital output	DR5 Digital output\ dig_out_func	Aus: Ausgänge 1 und 2 sind deaktiviert.
		Redundanzfrequenz 90° / 180°
Digital output \ Measurement Function	DR5 Digital output\ frequency_val_sel	Masse (Durchfluss) Volumen (Durchfluss) Temperatur Dichte Fraktion A (Durchfluss) Fraktion B (Durchfluss) Fraktion A (%)
Digital output \ Frequency Output Direction	DR5 Digital output \ frequency_direction	Nur eine Richtung: Der Ausgang gibt nur Frequenzsignale aus, wenn der gemessene Durchfluss positiv ist.
		Beide Richtungen: Der Ausgang gibt in beiden Fällen Frequenzsignale aus, unabhängig von der Richtung des gemessenen Durchflusses
Digital output \ Frequency Output Fmax	frequency_max	Frequenz Fmax 10 kHz 5 kHz 1 kHz 500 Hz

CT-Parameter

D.2 Redundanzfrequenzausgang

Parametername (PDM)	Parametername (SIFLOW)	Kommentar
Digital output \ Frequency output Timeconstant	DR5 Digital output \ frequency_time_const	Bei Frequenzausgängen in Steuerungssystemen ist es manchmal notwendig, die Zeitkonstante zu erhöhen, um ein stabileres System zu erhalten. Alternativ kann die Zeitkonstante erniedrigt werden, um für das Messsystem schnellere und präzisere Ausgangssignale zu erhalten.
		Die Zeitkonstante Tau ist von 0 60 Sek. einstellbar, siehe hierzu die Einstellungen.
		Das Ausgangssignal wird nach folgender Formel gedämpft: A = K(1 - e -t/tau); wobei gilt: Tau = Zeitkonstante 1 Tau = 0,63 K 5 Tau = 0,993 K
Digital output \ SF reaction	DR5 Digital output \ dig_out_sf_reaction	Reaktion des Digitalausgangs auf SF (Systemfehler): 0 = keine spezielle Reaktion auf SF 1 = Ausgänge auf Aus setzen 2 = Ausgänge auf Ein setzen
OCX \ Process Value 1 ID	DR39 CT parameters \ Process_value_1_ID	Dieser Wert muss wie folgt gesetzt werden: Kein Prozesswert ausgewählt
OCX \ Process Value 2 ID	DR39 CT parameters \ Process_value_2_ID	Dieser Wert muss wie folgt gesetzt werden: Kein Prozesswert ausgewählt

D.3 OCX

DR39

Parametername (PDM)	Parametername (SIFLOW)	Kommentar
OXC \ SW Version Type	DR39 CT parameters \ ocx_version_type	Dieser Wert muss wie folgt gesetzt werden: "V"
OXC \ Process value 1	DR39 CT parameters \ Process_value_1_ID	Einstellbar als erster Prozesswert: Volumendurchfluss Massedurchfluss Durchfluss Fraktion A Durchfluss Fraktion B Dichte Zähler 1 Zähler 2 Kein Prozesswert ausgewählt CT-Modus deaktiviert Hinweis: Wenn Sie Prozesswert 1 nicht verwenden, jedoch den digitalen Redundanzausgang verwenden, wählen Sie "Kein Prozesswert ausgewählt"
OXC \ Process value 2	DR39 CT parameters \ Process_value_2_ID	Einstellbar als erster Prozesswert: Volumendurchfluss Massedurchfluss Durchfluss Fraktion A Durchfluss Fraktion B Dichte Zähler 1 Zähler 2 Kein Prozesswert ausgewählt CT-Modus deaktiviert Hinweis: Wenn Sie Prozesswert 2 nicht verwenden, jedoch den digitalen Redundanzausgang verwenden, wählen Sie "Kein Prozesswert ausgewählt"
OCX \ Main Number	DR39 CT parameters \ ocx_main-nr	Hauptnummer OCX-Version
OCX \ Sub Number	DR5 Digital output \ ocx_sub-nr	Unternummer OCX-Version

CT-Parameter

D.3 OCX

ESD-Richtlinien

Ε

EGB-Richtlinien beachten

ACHTUNG

EGB-Schutzmaßnahmen

Beachten Sie bei der Handhabung von Funktionsbaugruppen und anderen Komponenten, die mit diesem Symbol gekennzeichnet sind, immer die EGB-Schutz-Richtlinien (Elektrostatisch Gefährdete Bauelemente/ FunktionsBaugruppen).

- Grundsätzlich gilt, dass Funktionsbaugruppen nur dann berührt werden sollen, wenn dies wegen vorzunehmender Arbeiten unvermeidlich ist.
- Verwenden Sie beim Hantieren mit Funktionsbaugruppen eine leitende und geerdete Arbeitsunterlage.
- Legen Sie ein Erdungsarmband an.
- Fassen Sie Funktionsbaugruppen nie so an, dass Baustein-Pins, Bauteilanschlüsse oder Leiterbahnen berührt werden.
- Verhindern Sie jede Berührung der Funktionsbaugruppen oder Bauteile mit aufladbaren Gegenständen (Kunststoffen).
- Bringen Sie Bauteile oder Funktionsbaugruppen nie in die Nähe von Datensichtgeräten oder Fernsehgeräten (Mindestabstand 10 cm).
- Belassen Sie die Funktionsbaugruppen solange in der Spezialverpackung, bis sie eingesetzt werden. Vermeiden Sie, Funktionsbaugruppen zur Registrierung etc. aus der Verpackung zu nehmen und anzufassen.
- Funktionsbaugruppen dürfen nur im spannungslosen Zustand gesteckt oder gezogen werden.
- Ist auf Siemens-Produkten das abgebildete Warnschild angebracht, sollten Sie die Schutzmaßnahmen beachten und entsprechend verfahren.

ESD-Richtlinien

Abkürzungen

CFC	Continuous Function Chart (Funktionsplan) für PCS7
CiR	Konfiguration in RUN
DB	Datenbaustein
DR	Datensatz
EDD	Elektronische Gerätebeschreibung (Electronic Device Description)
ES	Engineering-Station, Engineering-System
FB	Funktionsbaustein
FP	Bildbausteine für PCS 7
HE	Bedienfehler
HMI	Bedienerschnittstelle, Bedienen und Beobachten

F

ОМ	Objektmanager
OS	Operator Station (Bedienerstation)
PCS 7	Prozesssteuerungssoftware
PDM	Process Device Manager
PE	Prozessfehler
SPS	Speicherprogrammierbare Steuerung
PS	Stromversorgung
RTU	Fernbedienungsterminal (Remote Terminal Unit)
SE	Messaufnehmerfehler
SF	Systemfehler
SFC	Ablaufsteuerung (Sequential Function Chart) für PCS7
SIFLOW	Siemens Durchflussmessgerät

SPH

Systementwicklung Reaktionsspezifikation

UDT

Benutzerdefinierter Datentyp (User-Defined Data Type)

Abkürzungen

Glossar

ASIC	
	Ein ASIC (Application-Specific Integrated Circuit, Anwendungsspezifische Integrierte Schaltung) ist ein integrierter Schaltkreis (IC), der für einen bestimmten Einsatzzweck statt für den universellen Einsatz entworfen wurde.
BRIX	
	Grad Brix (Zeichen: °Bx) ist eine Maßeinheit für das Massenverhältnis von gelöstem Zucker zu Wasser in einer Flüssigkeit. Eine Lösung von 25 °Bx ist eine 25%-ige (w/w) Zuckerlösung mit 25 Gramm Zucker pro 100 Gramm Lösung.
CAN	
CAN	Controller Area Network. CAN ist das führende serielle Bussystem im Bereich der Embedded Control. CAN ist ein allgemein verbreitetes Vernetzungsprotokoll und wurde 1993 international standardisiert (ISO 11898-1).
CIR	
	Mit der Firmware V3.1 wurde die SIMATIC S7-400 mit der Systemeigenschaft "Configuration in RUN" (CiR) ausgestattet. Mit "Configuration in RUN" können Sie schnell und kostengünstig Hardware-Konfigurationsänderungen einschließlich der Inbetriebnahme im laufenden Betrieb einer Anlage durchführen. CiR umfasst das Hinzufügen, Entfernen und Umparametrieren von dezentralen Slaves und Baugruppen an PROFIBUS DP und PROFIBUS PA ohne Unterbrechung des laufenden Produktionsprozesses.
Cadabayatain	
Codebaustein	Ein Codebaustein ist bei SIMATIC S7 ein Baustein, der einen Teil des STEP 7- Anwenderprogramms enthält. (Im Gegensatz zu einem Datenbaustein: Dieser enthält nur Daten.)
Coriolis	
	Der Coriolis-Effekt ist eine scheinbare Ablenkung von Körpern, die sich auf einer geraden Linie bewegen, bei Betrachtung der Körper in einem rotierenden Bezugssystem. Er ist nach Gaspard-Gustave Coriolis benannt, einem französischen Mathematiker und Physiker, der ihn im Jahr 1835 beschrieb. Der Corioliseffekt wird durch die Corioliskraft bewirkt. Die Corioliskraft ist in der Gleichung für die Bewegung eines Körpers in einem rotierenden Bezugssystem enthalten.

DFT

Die diskrete Fourier-Transformation (DFT) ist eine der speziellen Formen der Fourier-Analyse. Als Form der Fourier-Analyse transformiert sie eine Funktion in eine andere. Bei der ursprünglichen Funktion handelt es sich häufig um eine Funktion im Zeitbereich. Das Ergebnis der Transformation wird dann als Darstellung im Frequenzbereich oder einfach als DFT bezeichnet. Bei der DFT werden genügend Frequenzanteile ausgewertet, um das zuvor analysierte endliche Segment rekonstruieren zu können. Somit ist die DFT eine spezielle Transformation für die Fourier-Analyse von zeitdiskreten Funktionen im endlichen Bereich.

Diagnosealarm

Diagnosefähige Baugruppen melden erkannte Systemfehler über Diagnosealarme an die CPU. Das Betriebssystem der CPU ruft bei einem Diagnosealarm den OB82 auf.

Diagnosedaten

Alle aufgetretenen Diagnoseereignisse werden in der CPU gesammelt und in den → Diagnosepuffer eingetragen. Falls ein Fehler-OB vorhanden ist, wird dieser gestartet.

Diagnosepuffer

Der Diagnosepuffer ist ein gepufferter Speicherbereich in der CPU, in dem Diagnoseereignisse in der Reihenfolge des Auftretens abgelegt sind. Zur Fehlerbehebung kann der Anwender die genaue Fehlerursache mit STEP 7 **Zielsystem > Baugruppenzustand** aus dem Diagnosepuffer auslesen.

Dichteparameter

Der Dichteparameter ist eine Konstante, die sich unter der Dichtekalibrierung findet. Diese Konstante wird verwendet, um die Dichte der Flüssigkeit im Messaufnehmer zu messen.

- Dichte (kg/ m³) = A + B (1 + Dichte TC x Temp.) * (1/(fr)²).
- A = Dichteparameter A (kg/m³).
- B = konstant.
- Dichte TC = Dichte-Temperaturkoeffizient des Messaufnehmers (%/GradC)
- Fr. = Resonanzfrequenz des Messaufnehmers (Hz)

Standard-Messaufnehmer ohne Dichtekalibrierung haben Mittelwerte, die im SENSORPROM gespeichert sind.

Dynamikbereich

Im Kontext der Durchflussmessung wird als Dynamikbereich der Bereich bezeichnet, in dem ein bestimmtes Durchflussmessgerät oder ein bestimmter Typ von Durchflussmessgerät eine akzeptable Messgenauigkeit erzielt. Ist auch als Arbeitsbereich bekannt. Beispiel: Wenn der Durchfluss eines zu messenden Gases voraussichtlich zwischen 100.000 m³ und 1.000.000 m³ pro Tag variiert, weist die betreffende Anwendung einen Dynamikbereich von 10:1 auf. Das Durchflussmessgerät benötigt daher ebenfalls einen Dynamikbereich von mindestens 10:1.

EMV

Die elektromagnetische Verträglichkeit (EMV) ist das Gebiet der Elektrotechnik, das sich mit der ungewollten Erzeugung, Verbreitung und dem ungewollten Empfang elektromagnetischer Energie im Zusammenhang mit deren ungewollten Effekten (elektromagnetische Störungen, elektromagnetische Interferenz) beschäftigt. Ziel der Untersuchung der elektromagnetischen Verträglichkeit ist das ordnungsgemäße Funktionieren unterschiedlicher Betriebsmittel in der betreffenden elektromagnetischen Umgebung und die Vermeidung von Störeffekten.

Fraktion

Die Fraktion wird als Bestandteil eines Gemisches bestimmt. Diese Mischung besteht aus zwei Komponenten (A+B), welche einzeln gemessen werden können. Wenn das Durchflussmessgerät mit einer bestimmten Fraktion bestellt wird, z. B. °BRIX, ist es in der Lage, die prozentuale Konzentration von Zucker in einer Lösung aus Wasser (B) + Zucker (A) zu ermitteln. Ab Fabrik wird der Kennlinienfaktor 'b' auf 1,0000 eingestellt.

Formel: % Konzentration = a + b x % Konzentration = die Konzentration des Mediums z. B. in $^{\circ}$ BRIX

- a = Fraktions-Offset in %
- b = ein Faktor ohne Größenordnung
- x = ist die Konzentration in % oder z. B. °BRIX

Funktionsbaugruppe (FM)

Eine Funktionsbaugruppe (FM) ist eine Baugruppe, die die Zentralbaugruppe (CPU) der Automatisierungssysteme S7 und M7 von zeitkritischen bzw. speicherintensiven Aufgaben der Prozesssignalverarbeitung entlastet. FMs verwenden in der Regel den internen Kommunikationsbus zum schnellen Datenaustausch mit der CPU. Beispiele zu FM Anwendung: Zählen, Positionieren, Regeln, Wiegen, Messen.

Funktionsbaustein (FM)

Ein Funktionsbaustein (FB) ist gemäß IEC 1131-3 ein → Codebaustein mit → statischen Daten. Ein FB bietet die Möglichkeit der Übergabe von Parametern im Anwenderprogramm. Dadurch eignen sich Funktionsbausteine zur Programmierung von häufig wiederkehrenden komplexen Funktionen, z. B. Regelungen, Betriebsartenanwahl.

HART

HART ist ein Kommunikationsprotokoll für die bidirektionale industrielle Feldkommunikation. Es dient zur Kommunikation zwischen intelligenten Feldinstrumenten und Hostsystemen. HART ist der weltweite Standard für die intelligente Prozessinstrumentierung. Die Mehrheit der heute weltweit in Anlagen installierten intelligenten Feldgeräte ist HART-fähig. Die HART-Technologie ist bedienungsfreundlich und sehr zuverlässig.

IP

Der IP-Code (engl. Ingress Protection, Eindringschutz) gibt an, bis zu welchem Grad ein Gehäuse dem von ihm umschlossenen elektronischen Betriebsmittel Schutz gegen Umweltbedingungen bietet. Diese so genannte Schutzart wird durch bestimmte Prüfungen festgestellt. Der IP-Code besteht aus zwei Ziffern, von denen die erste den Schutz gegen Fremdkörper, die zweite den Schutz gegen Feuchtigkeit angibt. Je höher die Zahl, desto stärker ist der Schutz. Beispiel: Bei der Schutzartbezeichnung IP67 bedeutet die erste Ziffer (6), dass das Gerät vollständig gegen Staub geschützt ist, und die zweite Ziffer (7), dass es gegen die Auswirkungen des Eintauchens in Flüssigkeit zwischen 15 cm und 1 m geschützt ist.

Korrekturfaktor

Dieser Faktor ermöglicht dem Anwender, eine Durchflusskorektur in % des Durchflussmessgeräts durchzuführen.

Durchflussrate (kg/h) = Korrekturfaktor x Durchflussrate (kg/h).

Wenn der Durchfluss im Durchflussmessgerät um +0,5 % ansteigt, muss der Korrekturfaktor im Gerätemenü 'Sensoreigenschaften' auf 1,005 geändert werden. Nach der Änderung zeigt der Durchflussmesser für alle mit dem Durchfluss in Zusammenhang stehenden Werte eine um 0.5 % höhere Durchflussrate an als zuvor.

Modbus

Modbus ist ein serielles Kommunikationsprotokoll zur Verwendung mit speicherprogrammierbaren Steuerungen (SPS). Modbus ermöglicht die Kommunikation zwischen einer großen Zahl an dasselbe Netzwerk angeschlossener Geräte. Über Modbus kann beispielsweise ein System, das Temperatur und Feuchtigkeit misst, diese Messergebnisse an einen Computer übertragen. Modbus dient häufig zur Verbindung eines überwachenden Computers mit einem Fernbedienungsterminal (RTU, Remote Terminal Unit) in ÜSE-Systemen (engl.: SCADA, Supervisory Control and Data Acquisition).

Modbus-Master

Ein Modbus-Gerät, das auf Daten in einem oder mehreren angeschlossenen Modbus-Slave-Geräten zugreifen kann.

Modbus-Slave

Ein Modbus-Gerät, das auf Anfragen von einem einzigen Modbus-Master antworten kann.

NAMUR

Normenarbeitsgemeinschaft für Meß- und Regeltechnik in der Chemischen Industrie (NAMUR). Die NAMUR ist ein Verband zur Wahrnehmung der Interessen der chemischen Industrie. Sie entwickelt Standards für die Messtechnik und für in Industrieanlagen eingesetzte elektrische Geräte.

Nullpunkteinstellung

Die Nullpunkteinstellung muss durchgeführt werden, um die höchste Messgenauigkeit zu erzielen. Um den Nullpunkt des Geräts einzustellen, muss der Durchfluss vollkommen gestoppt sein ('Null-Durchfluss'). Ein manueller Nullpunktabgleich kann über das Menü im Messumformer erhalten werden.

Organisationsbaustein

Organisationsbausteine (OBs) bilden die Schnittstelle zwischen dem Betriebssystem der CPU und dem Anwenderprogramm. In den Organisationsbausteinen wird die Reihenfolge der Bearbeitung des Anwenderprogramms festgelegt.

PED

Die europäische Druckgeräte-Richtlinie (97/23/EG) ist der auf europäischer Ebene geltende gesetzliche Rahmen für Betriebsmittel, die einer Gefahr aufgrund von Druck ausgesetzt sind. Die Richtlinie wurde durch das Europäische Parlament und den Europäischen Rat im Mai 1997 verabschiedet und ist seit Mai 2002 im Gebiet der Europäischen Union rechtsverbindlich.

Plato

Plato ist eine Maßeinheit für das Gewicht von in Wasser gelösten Feststoffen. Sie wird in Prozent ausgedrückt.

PROFIBUS

PROFIBUS (Process Field Bus) ist ein herstellerübergreifendes, offenes Bussystem, das in der deutschen DIN 19 245 normiert wurde. PROFIBUS ist ein Standard für die Feldbus-Kommunikation in der Automatisierungstechnik und nicht zu verwechseln mit dem PROFINET-Standard für Industrial Ethernet. PROFIBUS-PA (Prozessautomatisierung) ist eine von drei untereinander kompatiblen PROFIBUS-Varianten. PROFIBUS-DP (Dezentrale Peripherie)

Prozessalarm

Ein Prozessalarm wird ausgelöst von alarmauslösenden Baugruppen aufgrund eines bestimmten Ereignisses im Prozess (Über- oder Unterschreiten eines Grenzwertes; die Baugruppe hat die zyklische Wandlung ihrer Kanäle abgeschlossen).

Der Prozessalarm wird der CPU gemeldet. Entsprechend der Priorität dieses Alarms wird dann der zugeordnete \rightarrow Organisationsbaustein bearbeitet.

RTU

Remote Terminal Unit (Fernbedienungsterminal) = Standard-Modbus-Übertragungsart

Safety Extra Low Voltage (SELV, Schutzkleinspannungsquelle)

IEC 61140 definiert ein SELV System als "ein elektrisches System, in dem die Spannung die ELV-Werte unter normalen Bedingungen und unter Einzelfehlerbedingungen, einschließlich von Erdschlüssen in anderen Stromkreisen, nicht überschreitet".

SENSORPROM

Alle Einstellungen/Daten des Messaufnehmers, die auf einem EPROM gespeichert sind. Mithilfe der SENSORPROM-Technologie wird der Messumformer beim Start automatisch mit den Daten über Kalibrierung, Rohrnennweite, Messaufnehmertyp und Ausgangseinstellungen konfiguriert. Der SENSORPROM speichert automatisch die möglicherweise vom Anwender geänderten Werte oder Einstellungen und programmiert damit neue Messumformer automatisch ohne Verlust an Messgenauigkeit.

USM

USM II ist eine Kommunikationsplattform. Das USM II-Konzept von Siemens ermöglicht die Bestückung von Zusatz-Busmodulen ohne Funktionsverlust.

- 1. Alle Module sind in echtem "Plug & Play" bestückbar.
- 2. Modul und Messumformer werden automatisch mithilfe des SENSORPROM konfiguriert.

Index

Α

Abschirmung, 48 Ansprechpartner, 13 Aufbau, (siehe Installation) Ausgang Batch, 134 Digital, 131 Einfrieren/Erzwingen, 138 Frequenz, 133 Impuls, 132 Phasenverschiebung, 134 Zweistufiger Batch, 137 Austauschen der Baugruppe, 31 Automatisierungsumgebung, 21

В

Batch, 134 Befehle, 136 Führungskonstante, 135 Overrun, 136 Status, 137 Timeout, 136 Zähler, 136 Zweistufiger, 137 Batch-Modus, 199 Bytes 0 und 1 der Diagnosedaten, 261

С

Coriolis Anwendungen, 21 Messprinzip, 29 Cross Talk, 190

D

Dekontaminierung, 178 Diagnose Daten, 152 mit SIMATIC PDM, 184 Diagnosedaten Auslesen, 154 Dosieren, (Siehe Batch)

Ε

Eingang Digital, 139 Einheiten-Konvertierung, 126 Elektrischer Anschluss, 42 Anschluss (Ex), 45 Anschluss (nicht Ex), 43 Beispiele, 49 Digitalausgänge, 51 Digitaleingang, 51 Farbkodierung des Messaufnehmerkabels, 44, 47 Frontstecker (Ex), 46 Frontstecker (nicht Ex), 43 Funktionalitätsprüfung, 51 Minimale Gewindelänge, 42 Montage der Baugruppe, 40 Pinbelegungen (Ex), 46 Sicherheitsanweisungen, 39 Stiftbelegung, 44 Stromversorgung, 51 Trennwand, 39 **Ex-Bereich** Besondere Bedingungen, 18 Zulassungen, 16

F

Fehler Codes, 172 Daten- und Betriebs-, 164 Diagnosedaten, 152 Meldungspfade, 150 Meldungstypen, 149 Messaufnehmer-, 160 NAMUR Klassen, 160 Prozess-, 160 SIMATIC-Fehlerklassen, 159 Slave-Diagnose, 174 Systemstatus, 172 Typen von, 159 Fraktion, 140 Frequenzausgang, 198, 200 Frontstecker (nicht Ex), (siehe elektrischer Anschluss) Funktionalität, (Siehe Funktionen) Funktionsweise, 29

G

Gerät Identifikation, 12 Teileinspektion, 12 Grenzwerte, 127

Η

Hotline, 178

I

Impulsausgang, 198, 201 Inbetriebnahme Einstellen Grundparameter (PDM), 80 mit PDM, 80 Mit PDM, 79 Parameter in DB17 (S7) lesen, 89 Systemoptimierung (PDM), 81 Systemoptimierung (S7), 93 Installation Austauschen der Baugruppe, 31 Ex Baugruppe, 39 Ex-Anforderungen, 19 Falsch, 189 Hardware, 31 Montage auf der Profilschiene, 36 PDM Driver, 56 S7 HW-Update, 53 S7 SW, 53 SENSORPROM, 32 Sicherheit, 18 Software, 53 Internet Ansprechpartner, 13, 178 Durchfluss-Dokumentation, 13 Support, 178

Κ

Kenndaten zur Eigensicherheit, 16 Konformität, (Siehe Sicherheit) Kunden-Support Hotline, 178

L

LED Anzeige, 181 LED-Prüfung, 52 Leerrohrerkennung, (Siehe Überwachungsfunktionen) Leistungsmerkmale Grundlegende, 27 Lieferumfang, 11

Μ

Messfehler, 187 Modbus Werkseinstellungen, 59 MODBUS Anschluss an, 49 Anschluss an einen Master über RS232, 50 Serviceinformationen, 147 Slave-Adresse, 35 Slave-Adressschalter, 35

Ν

Nullpunkteinstellung, 81, 93, 121, 122 Automatische, 121 Gerätehandbuch, 123 Schritt 7, 93 Über PDM, 81

Ρ

PDM Driver Installation, 56 Einstellen Grundparameter, 80 Inbetriebnahme, 79 Konfiguration in SIMATIC Manager, 58 Systemoptimierung, 81 Programmierung S7, 61

R

Rauschfilter, 124 Reparatur, 177 Rücksendeverfahren, 178

S

S7

Datenbaustein, 63

Schleichmengenunterdrückung, 123, 189 Schreibschutz, 36 Schreibschutzschalter, 35 Schritt 7 Demo-Software, 88 Funktionsbaustein, 62 HW Konfiguration, 62, 85 HW Support Package, 53 Inbetriebnahme, 85 Parameter in DB17 lesen, 89 Programmierung, 61 Prozesswerte lesen, 96 SW Bibliothek, 53 Schwingungen, 190 SENSORPROM, 30, 31 Service, 177, 178 Sicherheit, 15 Ex-Anforderungen, 19 Extra Low Voltage (Funktionskleinspannung), 18 Informationen zum Explosionsschutz, 18 Zertifizierungen und Zulassungen, 18 Sicherheitsanweisungen Elektrischer Anschluss, 39 Simulation, 128 Ausgang, 130 Beispiel, 129 Eingang, 130 Fehler, 130 Mögliche Werte, 129 Skalierung, 125 Steckverbindungen Steckverbindungen, 42 Summenzähler, 142 Werte, 142 Zurücksetzen/voreinstellen, 143 Support, 178 Systemerweiterungen, 15 Systemstatusinformationen, 172

W

Wartung, 177

Ζ

Zero Sigma, (Siehe Nullpunktabgleich:Zero Sigma) Zweistufiger Batch, 199

Т

Trennwand, 39 Typenschild, 12

U

Überwachungsfunktionen Batch Timeout und Overrun, 136 Grenzwerte, 127 Leerrohrerkennung, 123