

CA 8345

Three-phase electrical network analyser

ICS Schneider Messtechnik GmbH Briesestraße 59 D-16562 Hohen Neuendorf / OT Bergfelde

Tel.: 03303 / 504066 Fax: 03303 / 504068 info@ics-schneider.de www.ics-schneider.de _____

Thank you for purchasing this **CA 8345 (Qualistar 2) three-phase power quality analyser**. For best results from your instrument:

- read these operating instructions carefully,
- comply with the precautions for use.

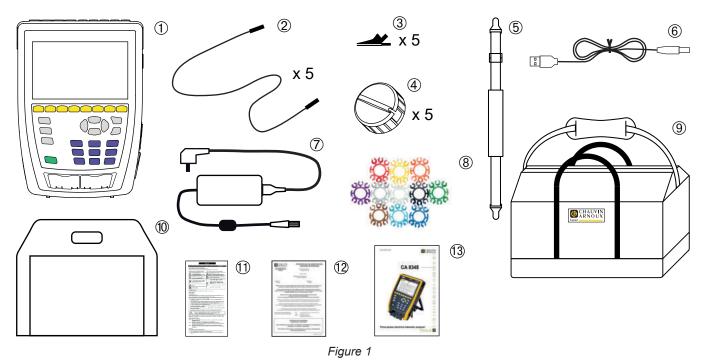
	WARNING, risk of DANGER! The operator must refer to these instructions whenever this danger symbol appears.
À	WARNING, risk of electric shock. The voltage applied to parts marked with this symbol may be hazardous.
- -	USB connector / USB drive.
A	Kensington anti-theft lock.
_₽ ₽ _₽	Ethernet connector (RJ45).
<u>∔</u> G	ND Earth.
i	Useful information or tip.
S>	SD card.
Error Conception	Chauvin Arnoux has designed this instrument in the context of a global Eco-Design approach. A life cycle analysis was carried out to master and optimize the impact of this product on the environment. More precisely, the product exceeds the requirements of regulations as regards recycling and valuation.
	The product is declared recyclable following an analysis of the life cycle in accordance with standard ISO 14040.
CE	The CE marking certifies that the product is in compliance with the requirements applicable in the Union European, in particular as regards Low Voltage Directive 2014/35/EU, Electromagnetic Compatibility Directive 2014/30/EU, Radio Equipment Directive 2014/53/EU, and Restriction of Hazardous Substances Directives 2011/65/EU and 2015/863/EU.
UK	The UKCA marking certifies that the product is in compliance with the requirements applicable in the United Kingdom as regards Low Voltage, Electromagnetic Compatibility, and Restriction of Hazardous Substances.
X	The rubbish bin with a line through it means that in the European Union, the product must undergo selective disposal in compliance with Directive WEEE 2012/19/UE.

Definition of measurement categories

- Measurement category IV corresponds to measurements taken at the source of low-voltage installations. Example: power feeders, counters and protection devices.
- Measurement category III corresponds to measurements on building installations. Example: distribution panel, circuit-breakers, machines or fixed industrial devices.
- Measurement category II corresponds to measurements taken on circuits directly connected to low-voltage installations. Example: power supply to electro-domestic devices and portable tools.

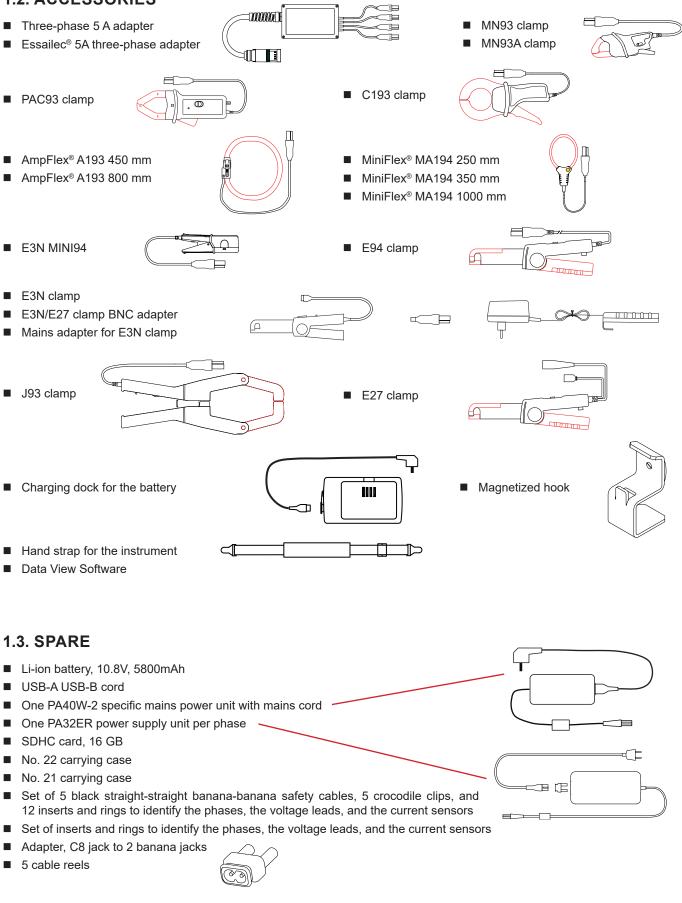
This instrument is compliant with safety standard IEC/EN 61010-2-030 or BS EN 61010-2-030, the leads are compliant with IEC/EN 61010-031 or BS EN 61010-031, and the current sensors are compliant with IEC/EN 61010-2-032 or BS EN 61010-2-032, for voltages up to 600V in category IV.

Failure to observe the precautions for use may create a risk of electric shock, fire, explosion, and/or destruction of the instrument and of the installations.


- The operator and/or the responsible authority must carefully read and clearly understand the various precautions to be taken in use. Sound knowledge and a keen awareness of electrical hazards are essential when using this instrument.
- If you use this instrument other than as specified, the protection it provides may be compromised, thereby endangering you.
- Do not use the instrument on networks of which the voltage or category exceeds those mentioned.
- Do not use the instrument if it seems to be damaged, incomplete, or poorly closed.
- Do not use the instrument without its battery.
- Before each use, check the condition of the insulation on the leads, housing, and accessories. Any item of which the insulation is deteriorated (even partially) must be set aside for repair or scrapping.
- Before using your instrument, check that it is perfectly dry. If it is wet, it must be thoroughly dried before it can be connected or used.
- Use only the leads and accessories supplied. The use of leads (or accessories) of a lower voltage or category limits the voltage or category of the combined instrument and leads (or accessories) to that of the leads (or accessories).
- Use personal protection equipment systematically.
- Keep your hands away from the terminals of the instrument.
- When handling the leads, test probes, and crocodile clips, keep your fingers behind the physical guard.
- Use only the mains power unit and battery pack provided by the manufacturer. These items have specific safety devices.
- Some current sensors must not be placed on or removed from bare conductors at hazardous voltages: refer to the data sheet of the sensor and comply with the handling instructions.
- All troubleshooting and metrological checks must be performed by competent and accredited personnel.

CONTENTS

1.	COMMISSIONING	5
	1.1. Delivery condition	
	1.2. Accessories	6
	1.3. Spare	
	1.4. Charging the battery	
	1.5. Choice of language	
2.	DESCRIPTION OF THE INSTRUMENT	8
	2.1. Functions	8
	2.2. Overall view	. 10
	2.3. Measurement terminals	. 10
	2.4. Connectors on side	. 11
	2.5. Battery	. 11
	2.6. Display unit	. 12
	2.7. On/Off button	. 12
	2.8. Keypad	. 13
	2.9. Installation of the colour codes	
	2.10. Memory card	
	2.11. Prop	. 16
	2.12. Magnetised hook (optional)	
3.	CONFIGURATION	
	3.1. Navigation	
	3.2. Users	
	3.3. Configuration of the instrument	
	3.4. Configuration of the measurements	
4.	USERS	
	4.1. Starting up	
	4.2. Navigation	
	4.3. Configuration	
	4.4. Connections	.42
	4.5. Functions of the instrument	
	4.6. Switching off	.44
	4.7. Safety status of the instrument	.45
5.	FORM OF THE SIGNAL	
	5.1. Display filter	
	5.2. RMS function	
	5.3. THD function	
	5.4. CF function	
	5.5. Min-Max function	
	5.6. Summary function	.49
_	5.7. Fresnel function	
6.	HARMONIC	
	6.1. Display filter	.54
_	6.2. Examples of screens	
7.	POWER	.57
	7.1. Display filter	
~	7.2. Examples of screens	
8.	ENERGY	
	8.1. Display filter	. 59
~	8.2. Examples of screens	
9.	TREND MODE	.61
	9.1. Start of a recording	
	9.2. List of recordings	
	9.3. Reading a recording	.62
10	0. TRANSIENT MODE	
	10.1. Start of a recording	
	10.2. List of recordings	
	10.3. Reading a recording	. 66


11. INRUSH CURRENT MODE	
11.1. Start of a capture	
11.2. List of captures	
11.3. Reading a capture	
12. ALARM MODE	
12.1. Start of an alarm campaign	
12.2. List of alarm campaigns	75
12.3. Start of an alarm campaign	
13. MONITORING MODE	
13.1. Start of a monitoring campaign	77
13.2. List of monitoring campaigns	79
13.3. Reading a monitoring campaigns	80
14. SCREENSHOT	81
14.1. Screenshot	81
14.2. Management of screenshots	81
15. HELP	
16. APPLICATION SOFTWARE	84
16.1. Obtain the PAT3 software	
17. TECHNICAL CHARACTERISTICS	85
17.1. Reference conditions	
17.2. Electrical characteristics	
17.3. Memory card	
17.4. Power supply	
17.5. Display unit	
17.6. Environmental conditions	99
17.7. Mechanical characteristics	
17.8. Compliance with international standards	
17.9. Electromagnetic compatibility (EMC)	
17.10. Radio emissions	
17.11. GPL code	
18. MAINTENANCE	
18.1. Cleaning the housing	
18.2. Maintenance of the sensors	
18.3. Replacement of the battery	
18.4. Memory card	
18.5. Updating the firmware	
19. WARRANTY	
20. APPENDICES	
20.1. Notation	
20.2. Formulas	
20.2. Flicker	
20.3.1 licker	4
instrument	. 114
20.5. Hysteresis	
20.6. Minimum scale values of waveforms and	4
minimum RMS values	115
20.7. Four-quadrant diagram	
20.7. Four-quadrant diagram	
20.0. Transient capture triggering mechanism	
20.9. Conditions of capture in infusit current mode. 20.10. Glossary	
20.10. Glossary	
	. 121

1.1. DELIVERY CONDITION

- (1)One CA 8345 with its battery, one SD card, and a protective film on the display unit.
- 5 black straight-straight banana-banana safety leads attached with a Velcro tie.
- 5 black crocodile clips.
 - 5 cable reels
 - One hand strap.
 - One USB A-B cord.
 - One specific mains power unit with mains cord, PA40W-2 or PA32ER depending on the order.
 - 12 sets of inserts and rings to mark the current leads and sensors according to their phases.
 - One carrying bag.
 - One carrying bag for the instrument.
 - One multilingual safety data sheet
 - One test report.
 - One multilingual quick start guide

1.2. ACCESSORIES

For accessories and spares, check out our Web site: <u>www.chauvin-arnoux.com</u>

1.4. CHARGING THE BATTERY

Before the first use, start by fully charging the battery.

- Remove the plastic film that prevents connecting the battery to the instrument. For this, refer to § 18.3, which explains how to remove the battery from the instrument.
- Connect the mains cord to the power supply unit and to mains.
- Open the elastomer hatch protecting the mains power socket and connect the special 4-point connector of the power supply unit to the instrument.

The \odot button blinks and the display unit indicates the progress of charging. They will go off only when the battery is fully charged.

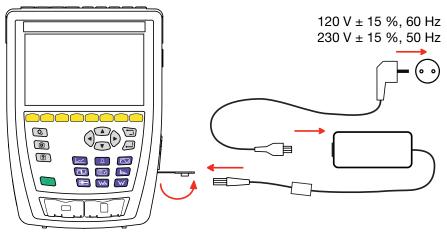


Figure 2

When the battery is completely discharged, the charging time is approximately 6 hours.

1.5. CHOICE OF LANGUAGE

Before using the instrument, start by choosing the display language.

Press the On/Off button to switch the instrument On.

Press the Configuration (Settings) key.

Press the second yellow function key ⁽¹⁾, then ⁽¹⁾, to open the language menu. More than 20 languages are available, choose yours.

	÷. ?	6			15/04/21	10:55	日本品 🎟
Ø	LANGUAGE					US	ER1 📘
Oar	Ocs	Oda	Ode	🖲 en-GB	Oes-ES	Ofi	Ofr-FR
Ohi	Oit	Oko	Onl	Ono	Opl	Opt-PT	Oro
Oru	Osv	Oth	Otr	Ovi	⊖zh-CN		

Figure 3

2.1. FUNCTIONS

The CA 8345 (Qualistar 2) is a portable three-phase power quality analyser with built-in rechargeable battery. It is in compliance with the standard governing the methods of measurement of power quality, IEC 61000-4-30, class A.

The CA 8345 is used:

- to measure the RMS values, powers, and disturbances of power distribution networks.
- to take a snapshot of the main characteristics of a three-phase network.
- to track variations of the different parameters over time.

The measurement uncertainty of the instrument is better than 0.1% for voltage measurements and 1% for current measurements.

The instrument provides a large choice of current sensors, for measurements from a few milliamperes up to several kiloamperes.

The instrument is compact and impact-resistant.

The ergonomics and simplicity of its user interface make it a pleasure to use. The CA 8345 has a large colour touch screen graphic display unit. It can also manage 3 user profiles.

The SD card can store a large quantity of measurements and photographs, which can be read directly on a PC. It is also possible to use a USB drive (optional).

The instrument can communicate by USB, wifi, or Ethernet.

The instrument has a remote user interface (VNC) allowing remote control from a PC, a tablet, or a smartphone.

The PAT3 application software processes the recorded data and generates reports.

2.1.1. MEASUREMENT FUNCTIONS

These serve to make the following measurements and calculations:

- Measurement of the RMS values of AC voltages up to 1000 V between terminals. Using ratios, the instrument can reach hundreds of gigavolts.
- Measurement of the RMS values of AC currents up to 10,000 A (neutral included). Using ratios, the instrument can reach hundreds of kiloamperes.
- Automatic detection of the type of current sensor and powering of the sensor if necessary.
- Measurement of the DC component of voltages and currents (neutral included).
- Measurement of RMS voltage and current (without neutral) over minimum and maximum half-cycles.
- Calculation of forward, reverse, and zero sequence voltage/ current unbalances.
- Measurement of inrush current, application to motor start-up.
- Measurement of peak values of voltages and currents (neutral included).
- Measurement of the frequency of 50-Hz and 60-Hz networks.
- Measurement of the current and voltage crest factors (neutral included).
- Calculation of the harmonic loss factor (FHL), application to transformers in the presence of harmonic currents.
- Calculation of the K factor (FK), application to transformers in the presence of harmonic currents.
- 40 alarms per user profile.
- Log of events such as voltage dips, overvoltages, interruptions, transients, rapid voltage changes (RVC), and synchronisation.
- Measurement of the total harmonic distortion of currents and of voltages (without neutral) referred to the fundamental (THD in %f).
- Measurement of the total harmonic distortion of currents and of voltages (neutral included) referred to the AC RMS value (THD in %r)
- Measurement of active, reactive (capacitive and inductive), non-active, distorting, and apparent power, per phase and total (without neutral).
- Measurement of the power factor (PF) and of the displacement factor (DPF or cos φ) (without neutral).
- Measurement of the distorting RMS value (d) for currents and voltages (without neutral).
- Measurement of the short-term flicker of voltages (P_{st}) (without neutral).
- Measurement of the long-term flicker of voltages (P_{it}) (without neutral).

- Measurement of active, reactive (capacitive and inductive), non-active, distorting, and apparent energy, per phase and total (without neutral).
- Valuation of the energy directly in currency (€, \$, £, etc.), with a basic rate and 8 special rates.
- Measurement of current and voltage harmonics (neutral included) up to order 63: RMS value, percentages referred to the fundamental (%f) (without neutral) or to the total RMS value (%r), minimum and maximum and harmonic sequence level.
- Measurement of apparent harmonic power (without neutral) up to order 63: percentages referred to the fundamental apparent power (%f) or to the total apparent power (%r), minimum and maximum of the level of one order.
- Measurement of current and voltage inter-harmonics (neutral included) up to order 62.
- Synchronisation with UTC time, with a choice of time zone.
- Monitoring mode, used to check the compliance of the voltages.
- Measurement of information signals on the CPL (MSV).

2.1.2. DISPLAY FUNCTIONS

- Display of waveforms (voltages and currents).
- Bargraphs of voltage and current harmonics.
- Screenshots.
- Display of information about the instrument: serial number, software version, MAC, Ethernet, USB and wifi addresses, etc.
- Display of recordings: trend, alarm, transients, and inrush current.

2.1.3. MEASUREMENT FUNCTIONS

- Trend recording (data logging) function with time-stamping and programming of the beginning and end of a record. Representation, in the form of barcharts or curves, of the mean values of many parameters as a function of time, with or without the MIN-MAX. 4 configurations per user profile.
- Transients function. Detection and transient recording (up to 1000 per record) for a chosen duration and on a chosen date (programming of the beginning and end of the transient recording). Recording of 4 complete cycles (one before the event triggering the transient and three after) in the 8 acquisition channels. Possibility of capturing shock waves up to 12kV over a duration of 1ms.
- Alarm function: List of alarms recorded (20,000 alarms at most) as a function of the thresholds programmed in the configuration menu. Programming of the beginning and end of monitoring of an alarm. 40 alarms per user profile.
- Inrush current function: display of parameters useful for studying motor start-up
 - Instantaneous value of the current and voltage at the instant designated by the cursor.
 - Absolute maximum instantaneous current and voltage (over the entire starting event).
 - RMS current and voltage (without neutral) of the half-cycle (or lobe) on which the cursor is placed.
 - Maximum half-cycle RMS current and voltage (over the entire starting event).
 - Instantaneous network frequency at the instant designated by the cursor.
 - Maximum, mean, and minimum instantaneous network frequency (over the entire starting event).
 - Time at which motor start-up begins.

2.1.4. CONFIGURATION FUNCTIONS

- Setting the date and time
- Brightness adjustment.
- Choice of colours of the curves.
- Management of screen auto-off.
- Choice of night mode display.
- Choice of language.
- Choice of calculation methods: non-active quantities broken down or not, choice of the unit of energy, choice of coefficients for the calculation of the K factor, choice of reference for levels of harmonics, calculation of PLT (moving window or not).
- Choice of distribution system (single-phase, two-phase, three-phase with or without measurement of neutral) and connection method (standard, 2 elements or 2½ elements).
- Configuration of recordings, of alarms, of inrush currents, and of transients.
- Erasure of the data (total or partial).
- Display of current sensors: detected, not detected, not managed, simulated, or impossible to simulate (2-element connection method). Adjustment of voltage and current ratios, transduction ratios, and sensitivity.
- Configuration of communication links (wifi, Ethernet).

2.2. OVERALL VIEW

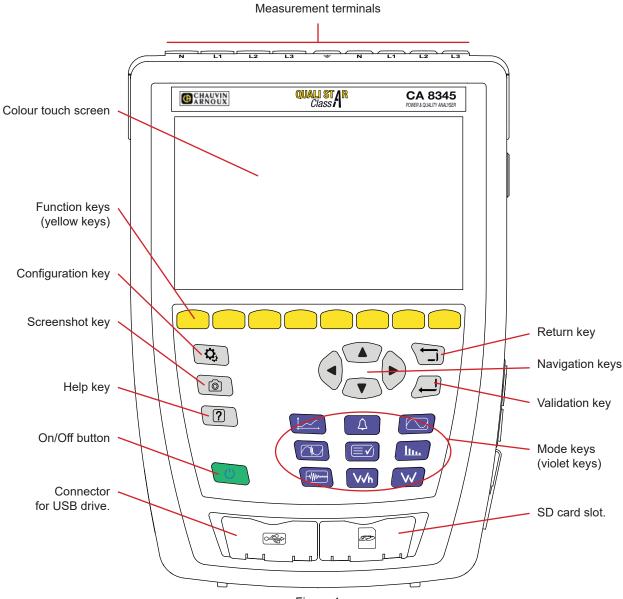


Figure 4

2.3. MEASUREMENT TERMINALS

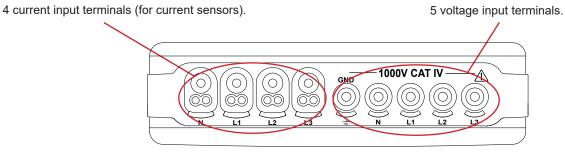
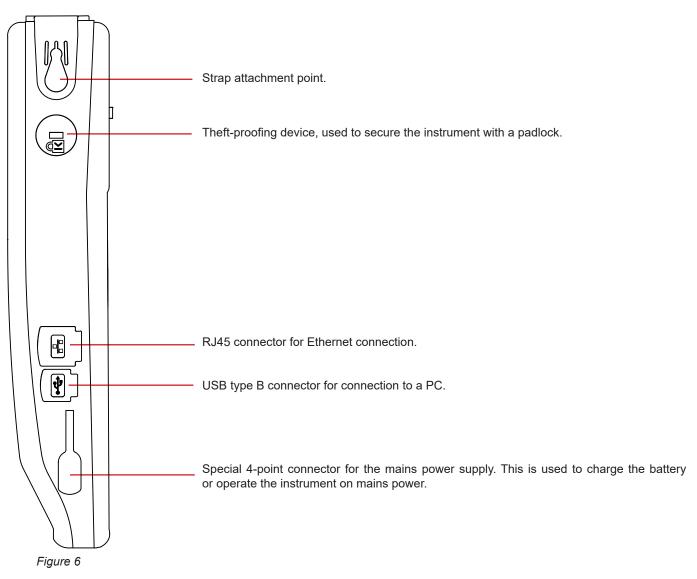



Figure 5

2.4. CONNECTORS ON SIDE

2.5. BATTERY

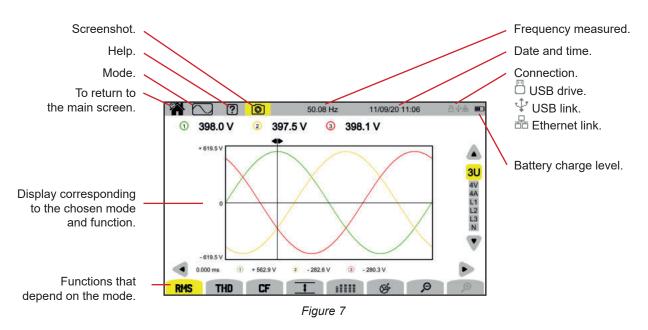
The instrument can operate either on its own battery or on mains power. It can operate on the battery while the latter is being recharged. It must never be used without its battery, which contributes to the user's safety.

Battery charge level check light

Battery fully charged, or a new battery whose level is unknown.

IIII, III, III, Battery charge level check light

Battery discharged. Charge completely in this case.


Battery charging: one bar blinks.

When the remaining charge of the battery is too low to ensure correct operation of the instrument, a message is displayed. If you do not connect the instrument to mains, it switches off a minute after the message.

2.6. DISPLAY UNIT

The CA 8345 has a large colour touch-screen display unit (WVGA). Below, a typical screen.

2.7. ON/OFF BUTTON

Pressing the \bullet button switches the instrument on. The \bullet button blinks orange during starting up.

When the battery is charging, the \odot button blinks green. When it is lit steadily, the battery is fully charged.

If the instrument is cut off, suddenly (interruption of mains power when the battery is discharged) or automatically (battery low), an information message is displayed when it is next switched on.

Pressing the O key again switches off the instrument. If the instrument is recording, metering energy, recording transients or alarms, or capturing an inrush current, it requests confirmation.

If you confirm the Power-off command, the records are finalized and the instrument is switched off. Recording resumes automatically the next time the instrument is switched on.

If the instrument is connected to mains when switched off, it starts charging the battery.

If, exceptionally, the display freezes and the instrument can no longer be switched off by pressing the O button, you can force it off by keeping the O button pressed for 10 seconds. This may cause a loss of the recordings in progress on the SD card.

2.8. KEYPAD

2.8.1. MODE KEYS (PURPLE KEYS)

These 9 keys are used to access specific modes:

Кеу	Function	See
	Waveform mode	§ 5
<u>lu</u>	Harmonic mode	§ 6
W	Power mode	§ 7
Wh	Energy mode	§ 8
	Trend mode	§ 9
	Transient mode	§ 10
	Inrush current mode	§ 11
Ą	Alarm mode	§ 12
	Monitoring mode	§ 13

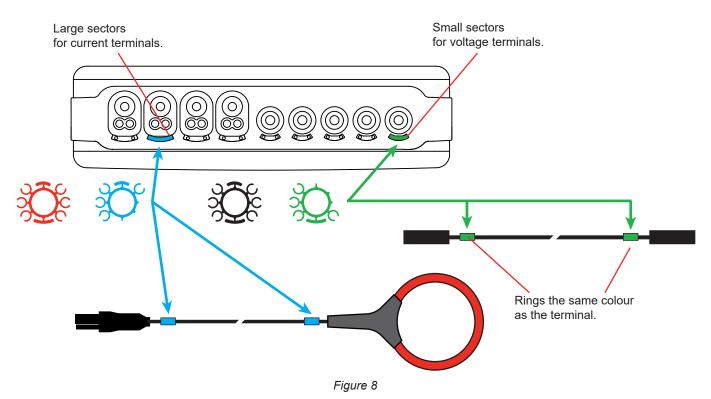
2.8.2. NAVIGATION KEYS

Кеу	Function
	4 directional arrows.
	Validation key.
	Return key.

2.8.3. THE OTHER KEYS

The functions of the other keys on the keypad are as follows:

Key	Function	See
Ċ,	Configuration key.	§ 4
Ø	Screenshot.	§ 14
?	Help key.	§ 15

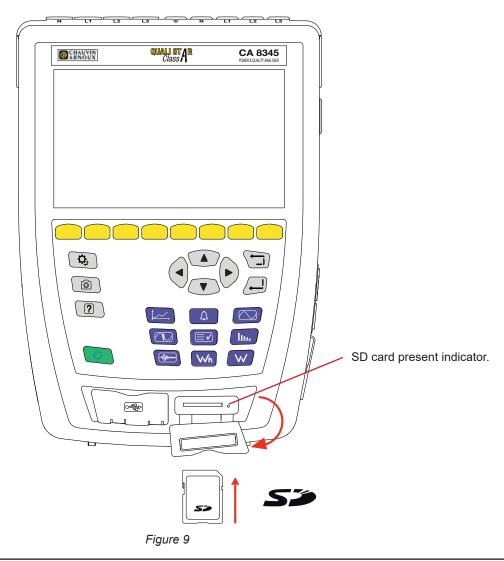

2.8.4. THE FUNCTION KEYS (8 YELLOW KEYS)

The functions of the yellow keys change according to the mode and the context.

2.9. INSTALLATION OF THE COLOUR CODES

To identify the cords and the input terminals, you can mark them using the coloured markers provided with the instrument.

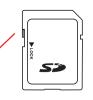
Break off the sector and insert it in the two holes provided for this purpose near the terminal (the large one for the current terminal and the small one for the voltage terminal).


Clip a ring of the same colour onto each end of the cord you are going to connect to the terminal. You have 12 sets of markers of different colours to harmonise the instrument with all phase/neutral colour codes in force.

2.10. MEMORY CARD

The instrument accepts SD (SDSC), SDHC, and SDXC memory cards in FAT16, FAT32 or exFAT format as required. The instrument is delivered with a formatted SD card. The memory card is essential for recording measurements.

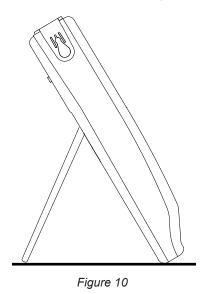
If you want to install a new SD card:


- Open the elastomer cap marked SD.
- Disconnect the SD card in place, following the procedure explained in 3.3.4. The red indicator goes off.
- Press on the memory card to remove it from its slot.
- Slide the new SD card all the way home in its slot. The red indicator lights.
- Then close the elastomer cap.

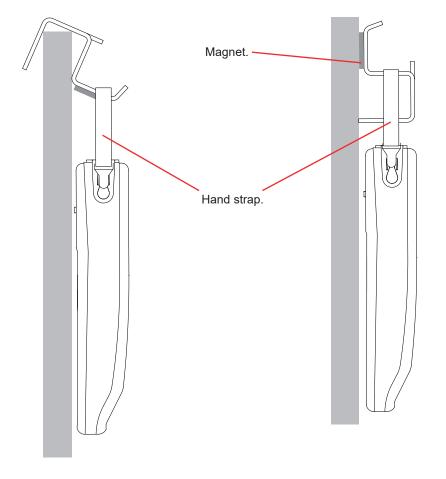
Write-protect the memory card when you remove it from the instrument. Unprotect the write-protected card before inserting it in the instrument.

Unprotected memory card.

i



Protected memory card.

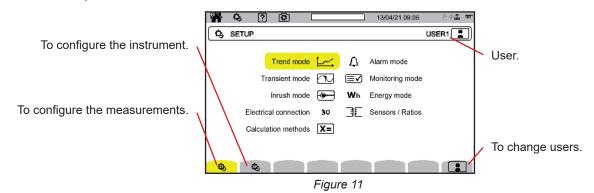

2.11. PROP

There is a retractable prop on the back of the instrument to hold it at an angle of 60°.

2.12. MAGNETISED HOOK (OPTIONAL)

The magnetised hook can be used to suspend the instrument from the top of a door or attach it to a metallic surface.

3. CONFIGURATION



Before using it, you must configure your instrument.

The CA 8345 has 2 configuration menus:

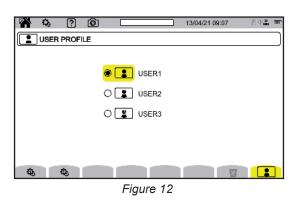
- the configuration of the instrument itself ⁽²⁾
- Configuration of the measurements

Press the Okey.

3.1. NAVIGATION

To configure the instrument, you can use the navigation keys (\blacktriangleleft , \blacktriangleright , \blacktriangle , \blacktriangledown) to select and modify the parameters, especially if you are wearing gloves, or you can use the touch screen.

The *key* is used to validate.


The 🗇 key is used to abort or to return to the previous screen.

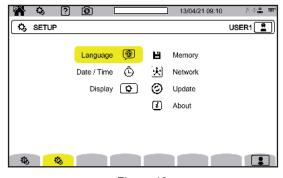
3.2. USERS

The Qualistar 2 lets 3 different users configure the instrument and the measurements.

Select and choose your user number.

Select the user name and change it.

The entry screen lets you enter:


- upper-case letters from A to Z,
- Iower-case letters from a to z,
- digits from 0 to 9,
- special characters: . _ @.

Use — to erase the previous character.

Use "to erase the selected character and all following characters.

When you return to your user profile, you recover your complete configuration.

3.3. CONFIGURATION OF THE INSTRUMENT

Except for the display and the language, the configuration of the instrument cannot be changed if the instrument is recording, metering energy, recording transients or alarms, or capturing an inrush current.

3.3.1. LANGUAGE

To choose the language of your instrument, select B. Choose your language, then validate using the B key.

3.3.2. DATE AND TIME.

To set the date and time, select $\hat{\mathbb{O}}$.

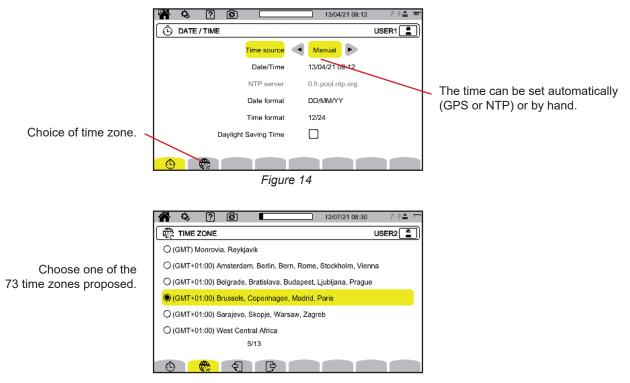


Figure 15

3.3.2.1. GPS MODE

The GPS mode is necessary to guarantee that your instrument is class A (per IEC 61000-4-30). The instrument must be exposed at least once to the GPS satellites, so that the receiver can recover the date and time. Correct synchronisation may take up to 15 minutes. Accuracy is then maintained, even if the satellites are no longer accessible, in the following situations:

Satellite reception	Maximum drift for Class A	Drift of the CA8345	
No satellite in view	±1s / 24h	± 24ms / 24h	
At least one satellite in view	±16.7ms vs UTC, at all times	±60ns / s, corrected at all times	

To avoid time discontinuities, automatic setting of the time is blocked when recording is in progress.

Status of time synchronisation by GPS.

Figure 16

The satellite reception status is indicated by an icon in the status bar, with the following meanings:

GPS synchronisation Not synchronised			Synchronised		
Satellite	No satellite in view	At least one satellite in view	No satellite in view	At least one satellite in view	
No recording	¢	\Rightarrow	\$	Ş	
Recording in progress	¢	¢	¢a	¢a.	

At the end of 40 days without exposure to a GPS satellite, the synchronisation icon (•) changes over to unsynchronised status (•).

3.3.2.2. NTP MODE

If you choose time synchronisation by NTP, enter the address of the NTP server in the **NTP server** field (for example 0.fr.pool.ntp. org), taking care to use your country's time zone, then connect the instrument to this server using the Ethernet connector or by wifi.

🖀 🕭 ? 🕲 🗆 🛁	13/04/21 10:22 🧿 万中昌 🎟	
	USER1	 Status
Time source	NTP	by NTF
Date/Time	13/04/21 10:22	🖵 Not
NTP server	0.fr.pool.ntp.arg	🖸 Syr
Date format	DD/MM/YY	🖓 🔓 Syn
Time format	12/24	in prog
Daylight Saving Time		
	· -	

Status of time synchronisation by NTP:

🖳 Not synchronised

🛃 Synchronised

Synchronised and recording in progress.

Figure 17

3.3.3. DISPLAY

Select O to open the display configuration menu.

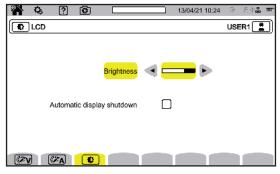


Figure 18

3.3.3.1. COLOURS OF THE VOLTAGE CURVES

To choose the colours of the voltage curves, select *(D)*. Choose one colour for each of the 3 phases and for the neutral. You can choose from among about thirty colours.

In night mode, the white background turns black and the colours are reversed.

3.3.3.2. COLOURS OF THE CURRENT CURVES

To choose the colours of the current curves, select *CA*. Choose one colour for each of the 4 current inputs. You can choose from among about thirty colours.

In night mode, the white background turns black.

3.3.3.3. SCREEN BRIGHTNESS AND AUTO-OFF

To ad	just the	brightness	of the di	splay ur	nit and the	screen	auto-off,	select	₽	

You can activate or deactivate screen auto-off. The screen is switched off after 10 minutes with no user action. This prolongs battery life. If a recording is in progress, the screen is not switched off.

To switch the screen back on, press any key.

3.3.4. MEMORY

Select 💾 to manage the content of the external memory.

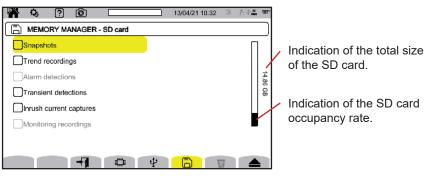
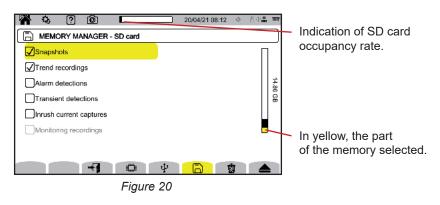


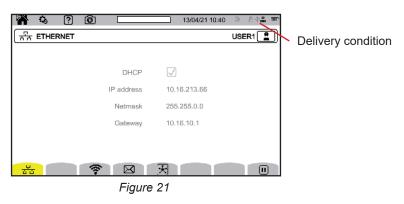
Figure 19


You must eject the SD card before removing it from the instrument, since otherwise you risk losing part or all of its content.

When the SD card is removed, the red SD card present indicator goes off and the A symbol is displayed in the status bar.

You can erase all or part of the content of these memories. To do this, make a selection and press $\overline{\mathbf{a}}$ The instrument requests confirmation $\overline{\mathbf{a}}$. Press \mathbf{a} to confirm or $\mathbf{\overline{a}}$ to abort.

You can also delete the other users by pressing \blacksquare .


To view an item in detail, select it, then press \neg . You can erase all or part of the content $\overrightarrow{\mathbf{0}}$.

You can also copy all or part of the contents of the SD card to a USB drive $\square \Rightarrow \Psi$.

3.3.5. NETWORK

Select \mathbf{k} to open the network configuration menu of the instrument.

☆ is used to configure the link Ethernet. is used to configure the wifi link. is used to configure email. र is used to connect to the IRD server.

1 Only one link (Ethernet or wifi) can be activated at time.

3.3.5.1. ETHERNET LINK.

The **I** symbol indicates that the link is active.

The D symbol indicates that the link is inactive and that it can be activated.

To modify a link, deactivate it by pressing .

Check the DHCP (Dynamic Host Configuration Protocol) box and the instrument requests the IP address of a DHCP server. If no DHCP server replies, an IP address will be generated automatically.

■ Uncheck the DHCP box to assign this address manually.

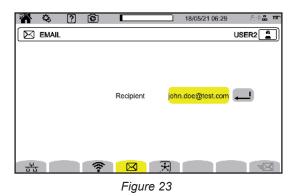
Then press **b** to reactivate the link.

3.3.5.2. WIFI LINK

Choose your network by clicking on SSID.

If you do not see your network, press 🕑 to search. The instrument shows you all available wifi networks. Then enter the password if required.

Figure 22

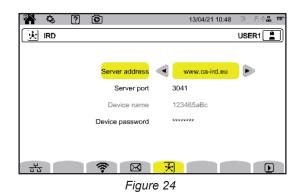

- Check the DHCP (Dynamic Host Configuration Protocol) box and the instrument requests the IP address of a DHCP server. If no DHCP server replies, an IP address will be generated automatically.
- Uncheck the DHCP box to assign this address manually.

The **III** symbol indicates that the link is active.

The D symbol indicates that the link is inactive and that it can be activated.

To modify a link, deactivate it by pressing . Uncheck DHCP to select manual and modify the parameters. Then press D to reactivate the link.

3.3.5.3. EMAIL



Enter the email address for notifications if an alarm threshold is exceeded.

3.3.5.4. IRD SERVER

IRD (Internet Relay Device) is a protocol used for communication between two peripherals located in two distinct sub-networks (for example a PC and a measuring instrument). Each peripheral connects to an IRD server and this server links the two peripherals.

To control an instrument from a PC, enter the identification of the instrument and a password.

3.3.6. UPDATING THE EMBEDDED SOFTWARE

Select ② to update the embedded software. To obtain the latest version, refer to § 18.5.

When the instrument finds more recent software, it displays the information about it and proposes installing it. For example, if you have recorded an update on the SD card, the instrument finds it and displays the following screen.

Figure 25

Switch the instrument off, then back on. It reboots in a mode specific to the software update.

Figure 26

If it does not automatically reboot in the specific mode, switch the instrument off, then restart while holding the \mathfrak{Q} and \mathfrak{O} keys down until you see the screen shown above.

Select:

- 古古 to update from the Chauvin Arnoux web site via the Ethernet link.
- to update from the SD card.
- Ψ to update from the USB drive.

Press to download the file (this may take several minutes), then D to start the update.

3.3.7. INFORMATION

Select *i* to view information about the instrument.

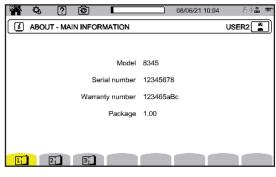


Figure 27

The information pages (1, 2, etc.) let you look up complete information about the instrument, such as: the warranty number,

- the serial number,
- the software and hardware versions,
- the MAC, Ethernet, and wifi addresses.

3.4. CONFIGURATION OF THE MEASUREMENTS

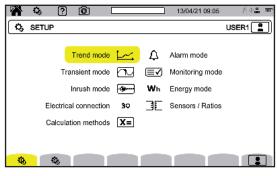
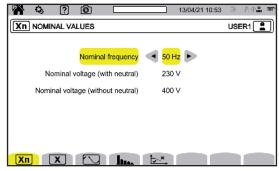


Figure 28


Before making measurements, you must specify or adapt the following parameters:

- The calculation methods,
- The distribution network and the type of connection,
- The voltage ratios, the current sensors, their ranges and their ratios,
- The values to be recorded, in the trend mode,
- The triggering levels for the transient and inrush current capture modes,
- The alarm thresholds, for the alarm mode,
- The units and the ranges for the energy mode,
- The parameters of the monitoring mode (using the PAT3 application software).

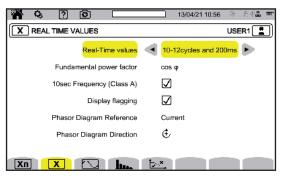
The configuration of the measurements cannot be altered if the instrument is recording, metering energy, recording transients or alarms, or capturing inrush currents.

3.4.1. CALCULATION METHODS

To choose the calculation methods, select X=.

Xn to specify the nominal values.

- The nominal frequency (50 or 60 Hz)
- The nominal voltage,
- The nominal voltage between phases.


The nominal voltage configured here is the Nominal System Voltage (U_n) . Not to be confused with the Nominal Declared Input Voltage (U_{din}) on the terminals of the instrument.

In the case of Medium-Voltage or High-Voltage networks, there may be a stepdown transformer between the network and the measuring instrument.

It is possible to configure U_n between 50V and 650kV, but U_{din} must never exceed 1000V between phases and 400V between Phase and Neutral.

The uncertainty on the ratio of the stepdown transformers affects the accuracy of the measurement: the measurement is guaranteed only when the ratio is equal to 1 and $U_{din} = U_n$.

X to choose the values displayed:

- For Real-time values, choose between 10-12 cycles and 200ms and 150-180 cycles and 3s. This choice will apply to the calculation and display of the values in most of the modes.
- For the **Fundamental power factor**, choose between **DPF**, **PF**, and **cos** φ for the display.
- Frequency over 10s: calculation of the frequency over 10s (per IEC 61000-4-30 class A) or not. If you measure only the current, deactivate this choice.
- Choose whether or not to activate Display flagging. When this is done, all quantities that undergo voltage dips
- When this is done, all quantities that undergo voltage dips, overvoltages, and interruptions are reported (see § 3.4.10).
- For the Phasor Diagram Reference, choose between Current and Voltage.
- For the **Phasor Diagram Direction**, choose between \oplus (clockwise) or \oplus (anticlockwise).

to specify the waveform mode.

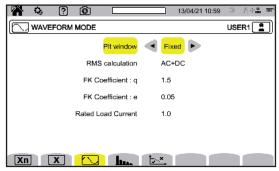


Figure 31

- The method of calculation of the flicker of the P_{it} (fixed or moving window),
 - moving window: the P_{it} will be calculated every 10 minutes. The first value will be available 2 hours after the instrument is switched on, because 12 values of P_{st} are needed to calculate P_{it}.
 - fixed window: the P_# will be calculated every 2 hours
- Calculation of the RMS value,
- The coefficient **q** for the calculation of the K factor (between 1.5 and 1.7), q is an exponential constant that depends on the type of winding and the frequency.
 The value of **1** are written for the calculation of the second seco
 - The value of 1.7 is suitable for transformers whose the conductor cross sections are round or square.
 - The value of 1.5 is suitable for transformers whose the low-voltage windings are in foil form.
- The coefficient **e** for the calculation of the K factor (between 0.05 and 0.10).
- e is the ratio of Eddy current losses (at the fundamental frequency) to resistive losses, both evaluated at the reference temperature. The default values (q = 1.7 and e = 0.10) are suitable for most applications.

to specify:

- The harmonic reference level (the level of the fundamental %f or the RMS value %r),
- The first flagging frequency on the main to be monitored **MSV1**.
- The second flagging frequency on the main to be monitored **MSV2**.

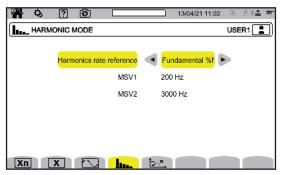


Figure 32

to specify the curve of maximum MSV voltages as a function of frequency. There are 5 preset points that you can modify.

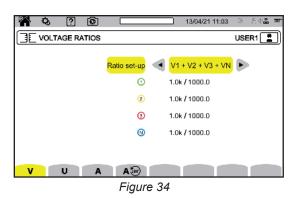
🎢 🤹 ? 🔞		13/04/21 11:02 ③ 吾中品 🎟
MSV TEMPLATE		USER1
	Point 1	0 kHz / 230 V 🔔
	Point 2	0.125 kHz / 230 V
	Point 3	1.525 kHz / 55 V
	Point 4	3 kHz / 20 V
	Point 5	5 kHz / 20 V
Xn X 🔼	hu.	
	Figure	

Figure 33

3.4.2. THE DISTRIBUTION NETWORK AND THE TYPE OF CONNECTION,

To choose the connection of the instrument according to the distribution network, select $\mathbf{3}\phi$. One or more types of network correspond to each distribution system.

Distribution system	Network	Electrical diagram		
Single-phase, 2 wires (L1 and N)	Single-phase, 2 wires with neutral, without earth			
Single-phase, 3 wires (L1, N, and earth)	Single-phase, 3 wires with neutral and earth			
Two-phase, 2 wires (L1 and L2)	Two-phase, 2 wires			
	Three-phase, 2 wires in open star	UNN M LI		
	Two-phase, 3 wires with neutral, without earth	L1 N L2		
Two-phase, 3 wires (L1, L2, and N)	Two-phase, 3 wires in open star with neutral, without earth	WW M LI		
	Two-phase, 3 wires in "high leg" delta with neutral, without earth			
	Two-phase, 3 wires in open "high leg" delta with neutral, without earth	L1 N L2		


Distribution system	Network	Electrical diagram		
	Two-phase, 4 wires with neutral and earth	$ \begin{array}{c} L1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
Two-phase, 4 wires (L1, L2, N, and earth)	Three-phase, 4 wires in open star with neutral and earth	$\frac{N}{=} \frac{L2}{L2}$		
	Three-phase, 4 wires in "high leg" delta with neutral and earth	L1 GND = L2		
	Three-phase, 4 wires in open "high leg" delta with neutral and earth	$ \begin{array}{c} $		

Distribution system	Network	Electrical diagram
	Three-phase, 3 wires in star	UNN LI L2
Three-phase, 3 wires (L1, L2, and L3)	Three-phase, 3 wires in delta	
For three-phase, 3 wires, indicate which current sensors will be connected: all 3 sensors (3A) or only 2 (A1 and A2, or A2 and A3, or A3 and A1). If 3 sensors are connected, the calculation will be done by the 3 wattmeters with virtual neutral method. If 2 sensors are connected, the calculation will be done by the Aron method. For a 2-sensor connection, the third sensor is not needed if the other two are identical (same type, same range, and same ratio). Otherwise, the third sensor must be connected for current measurements.	Three-phase, 3 wires in open delta	
	Three-phase, 3 wires in open delta with link to earth between phases	
	Three-phase, 3 wires in open delta with link to earth on the phase	
	Three-phase, 3 wires in open "high leg" delta	
	Three-phase, 3 wires in "high leg" delta	

Distribution system	Network	Electrical diagram
Three-phase, 4 wires (L1, L2, L3, and N)	Three-phase, 4 wires with neutral, without earth	N N LI L2
Indicate which voltages will be connected: all 3 voltages (3V) or only 2 (V1V2, V2V3 or V3V1).	Three-phase, 4 wires in open "high leg" delta with neutral, without earth	$\begin{array}{c} L3 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
If you connect only 2 voltages, the 3 phases must be balanced (2 ¹ / ₂ elements method).	Three-phase, 4 wires in "high leg" delta with neutral, without earth	L3 $L1$ N $=$ $L2$
Three-phase, 5 wires (L1, L2, L3, N, and earth)	Three-phase, 5 wires in star with earth and neutral	I3 N I1 GND = $I2$
	Three-phase, 5 wires in open high leg delta with earth and neutral	$\begin{array}{c} L3 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
If you connect only 2 voltages, the 3 phases must be balanced (2 ½ elements method).	Three-phase, 5 wires in delta with earth and neutral	$ \begin{array}{c} L3 \\ L1 \\ \hline GND \\ \hline L2 \end{array} $

3.4.3. SENSORS AND RATIOS

To choose the voltage ratios, the current sensor ratios, and the range of the sensor, select $\exists E$.

Voltage ratios are used when the voltages to be measured are too high for the instrument and voltage transformers are used to lower them. The ratio lets you display the true voltage and use it in the calculations.

To choose the voltage ratios, select V for phase-to-neutral voltages (with neutral) or U for phase-to-phase voltages (without neutral).

- 4V 1/1 or 3U 1/1: all channels have the same ratio, unity.
- 4V or 3U: all channels have the same ratio, to be programmed.
- 3V+VN: all channels have the same ratio; the neutral has a different ratio.
- V1+V2+V3+VN or U1+U2+U3: each channel has a different ratio, to be programmed.

For the ratios, the primary voltages are in kV and the secondary voltages are in V.

To avoid calculations, you can use a multiplier $1/\sqrt{3}$ both for the primary voltages and for the secondary voltages.

3.4.3.2. CURRENT SENSORS

To choose the ratios and ranges of current sensors, select \mathbf{A} .

The instrument automatically displays the current sensor models detected.

The different current sensors are:

	MINI94 clamp 200 A	
	MN93 clamp 200 A	
1	MN93A clamp 100 A	
	MN93A clamp 5 A	Ratio, to be programmed: [1 to 60,000] / {1; 2; 5}
	C193 clamp 1000 A	
0=	J93 clamp 3500 A	
	PAC93 clamp 1000 A	
	E3N or E27 clamp	Choice of sensitivity: sensitivity 10 mV/A, range 100 A sensitivity 100 mV/A, range 10 A
Ō	AmpFlex [®] A193 MiniFlex [®] MA194	Choice of range: 0.10 A - 100.0 A 1.0 A - 1000 A 10 A - 10.00 kA
	Three-phase adapter: 5 A	Ratio, to be programmed: [1 to 60,000] / {1; 2; 5}

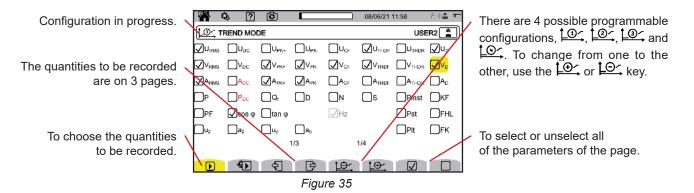
Current ratios are used when the currents to be measured are too high for the instrument and current transformers are used to lower them. The ratio lets you display the true current and use it in the calculations.

- 4A: all channels have the same ratio, to be programmed.
- 4A+AN: all channels have the same ratio; the neutral has a different ratio.
- A1+A2+A3+AN: each channel has a different ratio, to be programmed.

For the ratio, the primary current cannot be less than the secondary current.

In the case of a three-phase, 3-wire set-up, when only 2 current sensors are connected, if these 2 sensors are of the same type and have the same ratio, the instrument simulates the third sensor, giving it the same characteristics as the two others. The connection configuration must indicate which sensors will be present. The third sensor will then be shown as simulated.

This menu appears only for the sensors concerned (see the table above).


3.4.3.3. REVERSAL OF CURRENT

To reverse a current sensor, select A 580.

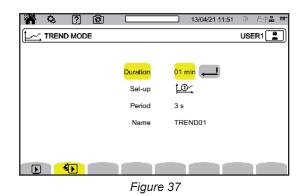
If you have connected your current sensors and find during the measurements that one or more sensors are not in the right direction. You can easily reverse them without having to turn them round.

3.4.4. TREND MODE

The trend mode \checkmark is used to record different quantities for a specified duration. To configure the trend mode, select \checkmark .

All of the quantities the instrument measures can be recorded. Check those you want to record. The frequency (Hz) is always selected.

For more information about these quantities, refer to the glossary in § 20.10.


Quantities displayed in red are incompatible with the chosen configuration and will not be recorded.

Pages 2 and 3 concern the recording of harmonics. For each of these quantities, it is possible to select the orders of the harmonics to be recorded (between 0 and 63) and, possibly, to select odd harmonics only.

*	\$?	6	[] 1	3/04/21 11:11	9	日中品 町
<u>[10-,</u> т								ER1		
			_							
		<u></u>	∕]U-h	00	\rightarrow	63		Odd only		
		Ľ]V-h	00	→	63		Odd only		
		C	A-h	00	→	63	C	Odd only		
				2/3			1/4			
	Ť.		¢.		ß	ĻΘ		<u>t⊕r</u>	\checkmark	
Figure 36										

- ★ is used to define, for repeated use (mode ★):
- the duration of the recording,
- the configuration, from among the 4 possible,
- the recording period, between 200ms and 2h,
- the name of the records.

3.4.5. TRANSIENT MODE

The transient mode \bigcirc is used to record voltage or current transients for a specified duration. To configure the transient mode, select \bigcirc .

🖀 🕹 ? 🕲 🗔	13/04/21 11:52 ② 后中晶 🎟				
TRANSIENT MODE	USER1				
Number of cycles before trigger event	1				
Threshold set-up	V1+V2+V3+VN				
0	9999 kV				
2	9999 kV				
0	9999 kV				
0	9999 kV				
- V A					
Figure 38					

3.4.5.1. VOLTAGE THRESHOLDS

To configure the voltage thresholds, select V.

Choose the number of cycles before the transient recording is triggered (1, 2, 3 or 4).

- **4V**: all of the voltage inputs have the same threshold, to be programmed.
- 3V+VN: all of the voltage inputs have the same threshold; the neutral has a different threshold.
- V1+V2+V3+VN: each input voltage has a different threshold, to be programmed.

3.4.5.2. CURRENT THRESHOLDS

To configure the current thresholds, select \mathbf{A} .

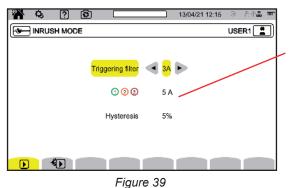
Choose the number of cycles before the transient recording is triggered (1, 2, 3 or 4).

- **4A**: all of the current inputs have the same threshold, to be programmed.
- 3A+AN: all of the current inputs have the same threshold; the neutral has a different threshold.
- A1+A2+A3+AN: each current input has a different threshold, to be programmed.

3.4.5.3. SHOCK WAVE THRESHOLDS

To configure the voltage thresholds of shock waves with respect to earth, select 1

- **4VE** all of the voltage inputs have the same threshold, to be programmed.
- 3VE+V_{NE}: all of the voltage inputs have the same threshold; the neutral has a different threshold.
- V_{1E}+V_{2E}+V_{3E}+V_{NE}: each input voltage has a different threshold, to be programmed.


3.4.5.4. RAPID PROGRAMMING OF CAPTURE

Press ***** to specify:

- the duration of the capture (between 1 minute and 99 days),
- the maximum number of transients in the capture,
- the name of the capture.

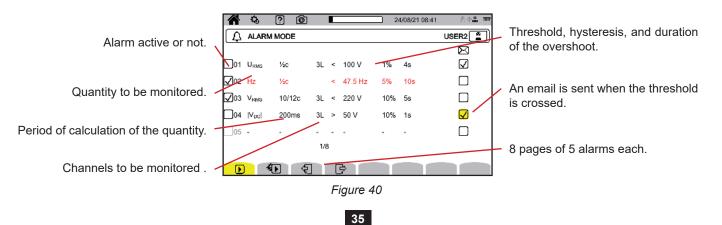
3.4.6. INRUSH CURRENT MODE

The inrush current mode is used to capture an inrush current. To configure the inrush current mode, select .

The threshold takes into account the current present, in order to detect the appearance of an additional current.

Choose whether the inrush current threshold applies to all 3 current inputs (3A) or only one of them (A1, A2, or A3). Specify this threshold and the hysteresis. The first threshold triggers the capture and the second threshold stops it.

For more information about the hysteresis, refer to § 20.5. Setting the hysteresis to 100% is equivalent to not having a stop threshold.


Press **1** to specify:

- the duration of the capture (between 1 minute and 99 days),
- the name of the records.

The number of captures is always 1.

3.4.7. ALARM MODE

The alarm mode \bigtriangleup is used to monitor one or more quantities, either in absolute value or in signed value. Each time a quantity crosses the threshold you have defined, the instrument records the information about the crossing. To configure the alarms, select \bigtriangleup .

There are 40 possible alarms.

For each of them you must specify:

- The quantity to be monitored from among the following quantities:
 - Hz,
 - URMS, VRMS, ARMS,
 - |UDC|, |VDC|, |ADC|,
 - |Upk+|, |Vpk+|, |Apk+|, |Upk-|, |Vpk-|, |Apk-|,
 - UCF, VCF, ACF,
 - UTHDF, VTHDF, ATHDF, UTHDR, VTHDR, ATHDR,
 - |P|, |PDC|, |Q_f|, N, D, S,
 - |PF|, $|\cos \varphi|$ (or |DPF| or $|PF_1|$), $|\tan \varphi|$, P_{st} , P_{tt} , FHL, FK, KF,
 - \blacksquare $u_2^{}, a_2^{}, u_0^{}, a_0^{},$
 - VMŠV1, UMSV1, VMSV2, UMSV2,
 - Ud, Vd, Ad,
 - U-h, V-h, A-h, U-ih, V-ih, A-ih.
 - For more information about these quantities, please refer to the glossary in § 20.10.
- The order of the harmonic (between 0 and 63), for U-h, V-h, A-h, U-ih, V-ih and A-ih only.
- The period of calculation of the value.
 - For AC signals:
 - 1/2c: 1 cycle every half-cycle. The value is measured over one cycle, starting at a passage through zero of the fundamental component, and refreshed every 1/2 cycle.
 - 10/12c: 10 cycles for 50 Hz (42.5 to 57.5 Hz), or 12 cycles for 60 Hz (51 to 69 Hz),
 - 150/180c: 150 cycles for 50 Hz (42.5 to 57.5 Hz), or 180 cycles for 60 Hz (51 to 69 Hz).
 - 10s.

For DC signals:

- 200ms
- 3s
- The channel(s) to be monitored. The instrument proposes a list according to the connection you have specified.
 - 3L: each of the 3 phases,
 - N: the neutral,
 - 4L: each of the 3 phases and the neutral,
- The direction of the alarm (< or >). Depending on the quantity, the direction may be imposed by the instrument.
- The threshold.
- The hysteresis: 1%, 2%, 5% or 10%.
- The minimum duration of the threshold overshoot.

Then choose whether to activate the alarm \square or not \square by checking the box.

You can also choose to have an email sent 🖾 when the alarm is triggered. If there are several alarms, they can be grouped in a single email to limit the rate of sending to a maximum of one email every 5 minutes. To specify an email address, refer to § 3.3.5.

When an alarm configuration line is red, it means that the quantity requested is not available.

3.4.8. ENERGY MODE

i

The energy mode \bigvee is used to calculate the energy consumed or produced during a specified period of time. To configure the energy mode, select \bigvee h.

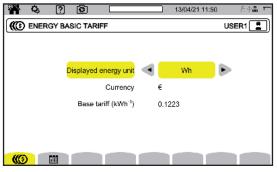
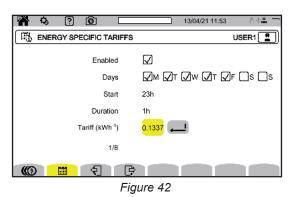



Figure 41

Select (1) to specify the energy calculation parameters:

- the unit of energy:
 - Wh: watt-hour
 - Joule
 - toe (nuclear): ton of nuclear oil equivalent
 - toe (non-nuclear): ton of non-nuclear oil equivalent
 - BTU: British Thermal Unit
 - the currency (, \in , \pm , etc),
- Use the €\$£ key to access the currency symbols
- the tariff rate.

Select it to define specific tariff rates (for example off hours).

You can define 8 different ranges and activate them \square or not \square :

- the days of the week,
- the starting time,
- the duration,
- the rate.

3.4.9. MONITORING MODE

The monitoring mode is used to check the conformity of the voltage for a specified duration.

A monitoring campaign contains a trend record, a transients record, alarm detection, a log of events, and a statistical analysis of a specific set of measurements.

The monitoring mode is configured using the PAT3 application software (see § 16).

* 	?	6			13/04/21 1	2:00	后中品 🗂
	TORING	S MODE				USE	R1 📘
			Alarm mod	eΛ			
			Trend mod				
		т	ransient mod	e 🖂	2		
		Use F	PAT3 softwar	e to con	figure		
	-						

Figure 43

3.4.10. FLAGGING

Flagging is configured using the PAT3 application software (see § 16).

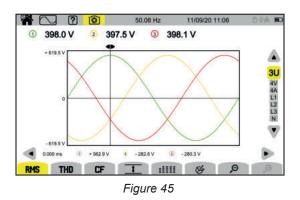
Flagging concerns:

- voltage dips,
- temporary overvoltages at industrial frequency,
- and interruptions.

All quantities that depend on the voltage are then reported because they have been calculated from a doubtful quantity.

Flagging serves to prevent counting a single event several times in different forms. For example, counting a single voltage dip as a dip and also as a frequency variation.

The triggering thresholds are specific to the different standards that define the characteristics of the voltage provided by public distribution networks (EN 50160, IEC 62749, etc.).


4.1. STARTING UP

To switch the instrument on, press the U button. The home screen is displayed.

Figure 44

Then the Waveform screen is displayed.

4.2. NAVIGATION

To navigate in the various menus of the instrument, you can use:

- the keypad,
- the touch screen,
- the remote user interface (VNC).

4.2.1. KEYPAD

The keys of the keypad are described in § 2.8.

The functions of the function keys are indicated at the bottom of the screen. They change according to the mode and the context. The active key is yellow.

4.2.2. TOUCH SCREEN

opens the following screen:

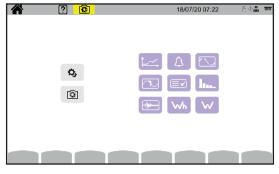


Figure 46

You can then access all functions of the instrument without using the keys.

4.2.3. REMOTE USER INTERFACE

Remote navigation is possible from a PC, a tablet, or a smartphone. You can then control the instrument remotely.

From a PC via an Ethernet link

- Connect the instrument to the PC using an Ethernet cable (see § 2.4).
- On the PC, in a web browser, enter http://IP_address_instrument. To find this address, refer to § 3.3.5.
 - **g**o to configuration (\mathbf{Q} key),
 - then, in the instrument configuration (second yellow function key: ⁽³⁾),
 - then in the network configuration, \mathbf{k} ,
 - then in the Ethernet link $\frac{\overline{}}{\overline{}}$
 - Check that the link is in fact active (display shaded and II) at bottom right),
 - Note the IP address.

With a tablet or a smartphone and a wifi link

- Share a wifi connection with the tablet or the smartphone
- In a web browser, enter http://IP_address_instrument. To find this address, refer to § 3.3.5.
 - go to configuration (key),
 - then, in the instrument configuration (second yellow function key ⁽²⁾),
 - then in the network configuration, 🔀,
 - then in the wifi link, ^{*}
 - Choose the wifi network of your smartphone or your tablet.
 - Check that the link is in fact active (display shaded and u at bottom right),
 - Note the IP address.

i

Only one link (Ethernet or wifi) can be activated at time.

Enter the IP address of your instrument in a browser. The remote browser (VNC) is activated.

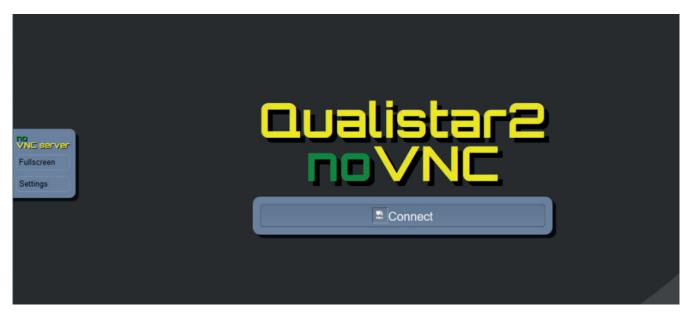


Figure 47

In the left-hand tab,

- click on **Fullscreen** to adjust the size of the display window on your screen.
- click on Settings then check Shared Mode to control the instrument, or View Only just to see the screen of the instrument.

Figure 48

Click on Settings again to close the configuration menu.

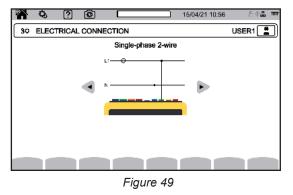
Then click on Connect. You will then see the screen of the C.A 8345 on your screen.

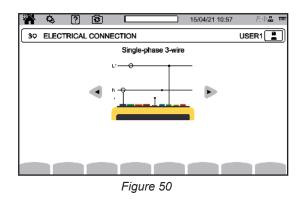
4.3. CONFIGURATION

Refer to the preceding paragraph to configure your instrument.

Before making any measurement, remember to specify:

- the connection (§ 3.4.2),
- the current sensors used and the voltage and current ratios (§ 3.4.3),
- the calculation method, if necessary (§ 3.4.1).


For the recording modes, remember to specify:


- the parameters to be recorded,
- the starting time and duration of the recording,
- the recording conditions.

4.4. CONNECTIONS

Make sure that all of your leads and sensors are correctly marked (see § 2.9), then connect them to the circuit to be measured as shown by the following diagrams.

4.4.1. SINGLE-PHASE NETWORK

4.4.2. TWO-PHASE NETWORK

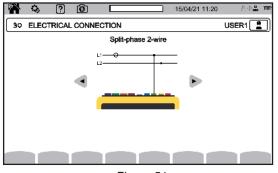


Figure 51

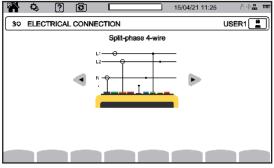


Figure 53

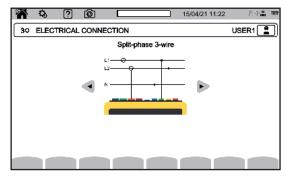
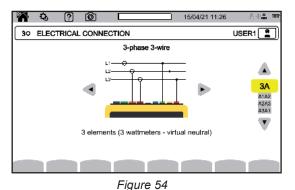



Figure 52

4.4.3. THREE-PHASE NETWORK

For three-phase, 3 wires, indicate which current sensors will be connected: all 3 sensors (3A) or only 2 (A1 and A2, or A2 and A3, or A3 and A1).

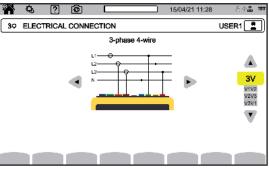
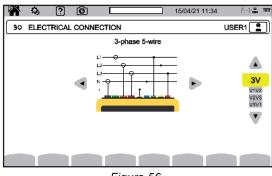



Figure 55

For three-phase 4 and 5 wires, indicate which voltages will be connected: all 3 voltages (3V) or only 2 (V1 and V2, or V2 and V3, or V3 and V1).

4.4.4. CONNECTION PROCEDURE

Depending on the network, not all of the terminals and sensors need be connected.

The unused terminals must be connected to the N terminal, since otherwise there will be phantom voltages on the channels left open. If the N terminal is not used, connect it to the GND terminal.

Following the procedure described below holds connection errors to a minimum and avoids wasting time.

- Connect the earth lead between the \pm terminal and the network earth.
- Connect the neutral lead between voltage terminal **N** and the network neutral.
- Connect the neutral current sensor to the current terminal **N**, then clamp the neutral cable.
- Connect the phase L1 lead between voltage terminal L1 and network phase L1.
- Connect the phase L1 current sensor to current terminal L1, then clamp the phase L1 cable.
- Connect the phase L2 lead between voltage terminal L2 and network phase L2.
- Connect the phase L2 current sensor to current terminal L2, then clamp the phase L2 cable.
- Connect the phase L3 lead between voltage terminal L3 and network phase L3.
- Connect the phase L3 current sensor to current terminal L3, then clamp the phase L3 cable.

If you connect a current sensor in reverse, you can correct this connection directly in the configuration. Press 3, 3, 3, and 8 in turn (see § 3.4.3.3).

Disconnection procedure:

- Proceed in the reverse of the order of connection, always ending by disconnecting the earth and/or the neutral.
- Disconnect the leads from the instrument.

4.5. FUNCTIONS OF THE INSTRUMENT

4.5.1. MEASUREMENTS

Make sure that you have correctly configured the instrument for the measurements you want to make.

You can then make one or more of the following measurements:

- View the waveforms of a signal
- View the harmonics of a signal
- View power measurements .
- Meter energy .
- Record a trend
- Record transients
- Capture an inrush current
- Detect alarms
- Monitor a network

There are 4 real-time modes:			
And 5 recording modes,	,	4	and 🖾

Some functions cannot be run simultaneously:

- The real-time modes (waveform, harmonics, power, and energy) can be activated while recording.
- If an inrush current capture is in progress, it is impossible to start monitoring of the recording of a trend, transients, or alarms.
- If monitoring or the recording of a trend, transients, or alarms is in progress, it is impossible to start an inrush current capture.

4.5.2. SCREENSHOT

Any screen can be recorded by a long press on the
key.
The
symbol turns yellow
key, then black
key.

You can also click on the 1 icon in the status bar at the top of the screen.

The snapshots are recorded on the SD card in directory 8345\ Photograph.

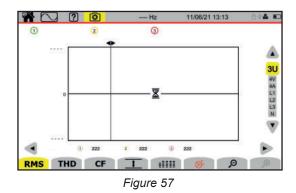
Real-time screens that are likely to vary (curves, metering) are captured in bursts (up to 5). This lets you choose the one that suits you best.

4.5.3. HELP

You can press the help key 😰 at any time.

The help screen provides information about the functions and the symbols used for the display mode in progress. The help screen provides information about the functions and the symbols used for the display mode in progress.

4.6. SWITCHING OFF

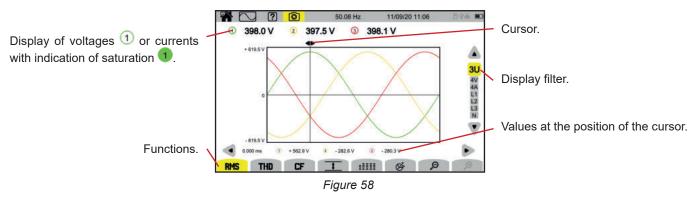

To switch the instrument off, press the ${}^{\mbox{U}}$ button.

If the instrument is recording, metering energy, recording transients or alarms, or capturing inrush current, it requests confirmation before switching off.

If you confirm the Power-off command, the records will be finalized and the instrument is switched off. If the instrument is switched back on before the scheduled end of recording sessions, these will be resumed automatically.

4.7. SAFETY STATUS OF THE INSTRUMENT

If there is an overload on the inputs, the instrument changes to safety status; a red line under the status bar reports this event.


This line indicates that the sum of all voltage inputs exceeds 1450 Vcrest. This condition is not reached with signals ranging up to 1000 VRMs. On the other hand, if you accidentally connect the 3 voltage inputs to the same phase, the safety threshold will be exceeded.

When the overload has been eliminated, the safety status disappears after approximately 10 seconds and you can once again use your instrument normally.

This change to safety status may also occur when the instrument is switched on.

The waveform mode 🖾 is used to display voltage and current curves, and values measured and calculated from the voltages and currents (except for harmonics, powers, and energies).

This is the screen that appears when the instrument is powered up.

The functions:

RMS: display of curves and RMS values.

THD: display of curves and harmonic distortion.

CF: display of curves and crest factor.

t display in table form of the maximum (MAX), RMS, minimum (MIN), and peak (PK+ and PK-) values.

IIII: display in table form of the RMS, DC, THD, CF, P_{st}inst, P_{st}, P_{it}, FHL, FK and KF values.

🔄 display of the Fresnel diagram of the signals.

 \mathcal{P} \mathfrak{P} : reduces or increases the time scale of the curves.

To move the time cursor, use the \blacktriangleleft keys.

To change the display filter, use the \blacktriangle \lor keys.

5.1. DISPLAY FILTER

The display filter depends on the connection chosen:

Connection	Display filter	Display filter for function 🖄
Single-phase, 2 wires Two-phase, 2 wires	L1 (no choice)	L1 (no choice)
Single-phase, 3 wires	2V, 2A, L1, N	
Two-phase, 3 wires	U, 2V, 2A, L1, L2	2V, 2A, L1, L2
Two-phase, 4 wires	U, 3V, 3A, L1, L2, N	2V, 2A, L1, L2
Three-phase, 3 wires	3U, 3A	3U, 3A
Three-phase, 4 wires	3U, 3V, 3A, L1, L2, L3	3U, 3V, 3A, L1, L2, L3
Three-phase, 5 wires	3U, 4V, 4A, L1, L2, L3, N	3U, 3V, 4A, L1, L2, L3

5.2. RMS FUNCTION

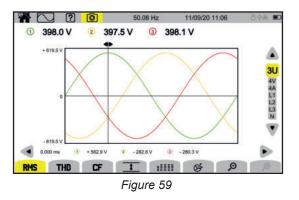
The **RMS** function is used to display the signals measured in a period, along with their RMS values, averaged over 200ms or 3s depending on what has been configured (see § 3.4.1).

The cursor can be used to check the instantaneous values along the curves displayed.

To move the cursor, use the \blacktriangleleft \blacktriangleright keys.

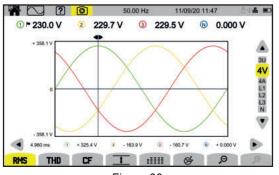
Here are a few examples of screens for the **RMS** function according to the display filter for a three-phase, 5-wire connection. To change the display filter, use the $\blacktriangle \forall$ keys.

The numbers of the channels ① are saturation indicators. The solid circle ① indicates that the channel being measured is full or that at least one channel used in calculating it is full.


The symbol near the channel number indicates that the voltage and all quantities that depend on it are doubtful. The associated current channel and the associated combined voltages are also flagged. For example, if V1 is marked, then A1, U1 and U3 will be also marked.

Flaggings concern voltage dips, overvoltages, interruptions, and rapid voltage changes.

To reduce or increase the time scale of the curves, use \wp \wp .


3U display filter

Displays the instantaneous curves of phase-to-phase voltages and their RMS values.

4V display filter

Displays the instantaneous curves of phase-to-neutral voltages and their RMS values.

4A display filter

Displays the instantaneous curves of currents and their RMS values.

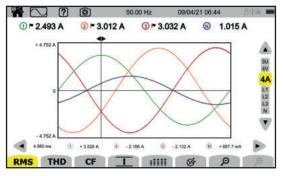
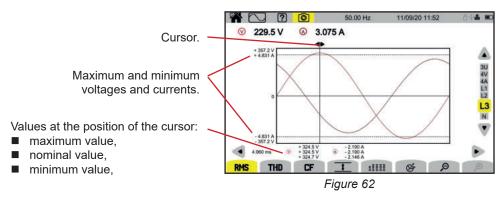



Figure 61

L3 display filter

Displays the instantaneous voltage and current curves of phase 3 and their RMS values.

There are 3 curves each time, often superimposed: the maximum curve, the nominal curve, and the minimum curve.

The L1, L2 and N display filters are similar but concern phase 1, phase 2, and the neutral.

5.3. THD FUNCTION

The **THD** function displays the signals measured in a period, along with their total harmonic distortion. The THD is displayed with as reference either the RMS value of the fundamental (%f) or the RMS value without DC (%r), depending on what you have configured (see § 3.4.1.).

The screens are similar to the **RMS** screens and depend on the display filter chosen.

5.4. CF FUNCTION

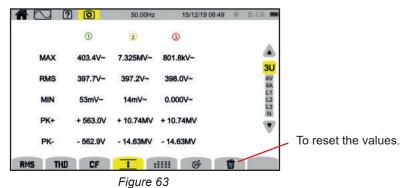
The CF function displays the signals measured in a period, along with their crest factors.

The screens are similar to the RMS screens and depend on the display filter chosen.

5.5. MIN-MAX FUNCTION

The <u>t</u> function is used to display the RMS, maximum (MAX), minimum (MIN), positive peak (PK+) and negative peak (PK-) values of the voltage and of the current.

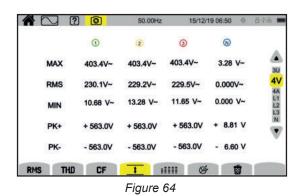
Here are a few examples of screens for the Min-Max function, depending on the display filter, for a three-phase, 5-wire connection. To change the display filter, use the ▲ ▼ keys.


The search for the extreme values starts when the instrument is switched on. To reset the values, press the 🖾 key.

If a value cannot be calculated (for example because the instrument is not connected to the network), the instrument displays - - -.

3U display filter

i


Displays the extreme values of the phase-to-phase voltages.

.ge. e ee

4V display filter

Displays the extreme values of the phase-to-neutral voltages.

4A display filter

Displays the extreme values of the currents.

] ? ()] 50.0	0 Hz 09/04	4/21 06:48	84 %
	0 •	2 =	③ ►	8	
MAX	3.390 A~	3.049 A~	3.187 A~	1.522 A~	A
RMS	2.496 A~	3.008 A~	3.033 A~	1.014 A~	3U 4V 4A
MIN	0.000 A~	0.000 A~	1.815 mA~	0.000 A~	L1 L2 L3
PK+	+ 3.586 A	+ 4.583 A	+ 5.192 A	+ 2.052 A	N V
PK-	- 3.612 A	-4.472 A	- 5.289 A	- 2.010 A	
RMS	THD C	F I	11111 @	÷ 🖞	
		Figui	re 65		

L1 display filter

Displays the extreme values of the voltage and current of phase 1.

		0	50.00 1	Hz	09/04/21 06:50	84 % m
				(A) !	•	
MAX	472.4 V	-		3.390	A~	A
RMS	236.0 V	~		2.494	A~	30 47 4A L1
MIN	0.000 V	I~		0.000	A~	L1 L2 L3 N
PK+	+ 669.5 V			+ 3.586	A	N V
PK-	- 669.5 V			- 3.612	A	č
RMS	THD	CF	T		6	
			Figure	e 66		

The L2, L3 and N display filters are similar but concern phase 2, phase 3, and the neutral. The L1, L2, and N display filters are similar but concern phase 1, phase 2, and the neutral.

5.6. SUMMARY FUNCTION

The **I** function displays:

- for voltages:
 - the RMS value,
 - the DC component,
 - the total harmonic distortion referred to the RMS value of the fundamental (THD %f),
 - the total harmonic distortion referred to the RMS value without DC (THD %r),
 - the crest factor (CF),
 - the short-term instantaneous flicker (P_{st}inst). For more information about the flicker, refer to § 20.3.
 - the short-term flicker (P_{st}),
 the long-term flicker (P_{tt}).

■ for currents:

i

- the RMS value,
- the DC component,
- the total harmonic distortion referred to the RMS value of the fundamental (THD %f) ,
- the total harmonic distortion referred to the RMS value without DC (THD %r) ,
- the crest factor (CF),
- the harmonic loss factor (FHL),
- the K factor (FK).
- the K-factor (KF).

Depending on the display filter, not all of these parameters are displayed.

The calculations start when the instrument is switched on.

If a value cannot be calculated (for example because the instrument is not connected to the network), the instrument displays - - -.

When a value is not specified (for example the DC component for an AC signal) or not yet calculated (for example the PLT), the instrument displays - - - .

Here are a few examples of screens for the Summary function, depending on the display filter, for a three-phase, 5-wire connection. To change the display filter, use the ▲ ▼ keys.

4V display filter

Displays the data of the phase-to-neutral voltages.

a c	7 7	0	49.98 Hz	18/05/21 07	25 📇 🗰
	0	(2)	3	0)
RMS	228.3 V~	232.4	V~ 236.0	V~ 5.86	9 V~
DC	+ 0.103 V=	+ 0.150	V= + 0.210	V= -0.18	6 V=
THD	2.7 %f	5.4	%f 2.7	%f	30
THD	2.7 %r	5.4 9	%r 2.7	%r 4.	5%r 4V
CF	1.374	1.418	1.451	1.56	L2
Pinst	0.014	0.017	0.016		L3 N
Pst	0.143	0.156	0.148	i i i	
Plt	0.121	0.133	0.129		
RMS	THD	CF	1 1111	8	

The energy calculation starts at fixed times: 00.00, 00.10, 00.20, 00.30, 00.40, 00.50, 01.00, 01.10, etc. So if you switch your instrument on at 08.01, the first P_{st} will be displayed at 08.20.

The calculation of the P_{tt} starts at fixed times: 00.00, 02.00, 04.00, 06.00, 08.00, 10.00, 12.00, etc. So if you switch your instrument on at 08.01, the first P_{tt} will be displayed at 12.00 in the case of a fixed window and at 10.10 in the case of a moving window. Only the calculation done with the fixed window is recognised by IEC standard 61000-4-30.

4A display filter

Displays the extreme values of the currents.

n 🔼 🖸	O	50.00Hz	15/12/	19 07:07	◆ 末百少品 ■
	0	2	3	8	
RMS	2.003A~	3.351A~	1.061A~	103mA	
DC	A=	A=	A=	103mA	
THD	0.001%f	0.001%f	0.003%f		3U 4V
	0.001%r	0.001%r	0.003%r	0.014%	ar 4A
CF	1.447	1.429	1.466	1.667	F L1 L2 L3 N
FHL	1.000	1.000	1.001		N
FK	1.000	1.000	1.000		
KF	0.000	0.000	0.000		
RMS THD	CF	-	illi Ø		

Figure 68

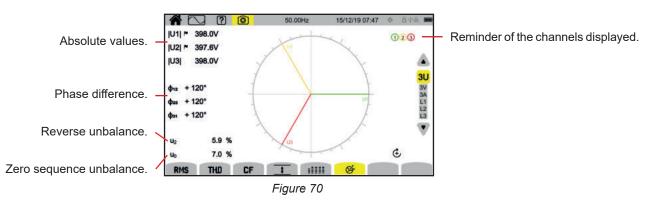
L2 display filter

Displays the voltage and current data of phase 2.

22	O	50.00H	z t	15/12/19 07:57	0	898 .		
	V							
RMS	229.7V~		3.363	A~				
DC	+ 20mV=	A=				30		
THD	0.001%f	0.001		%f		4V 4A		
	0.001%r		0.001	%г		3U 4V 4A L1 L2		
CF	1.415	1.438			L2 L3 N			
PSTinst	0.000	FHL	FHL 1.000			N		
PST	0.000	0.000 FK	FK 1.000	FK 1.000		K 1.000		v
PLT		KF	0.00	0				
THD	CF	1		0÷				
	RMS DC THD CF PSTinst PST PLT	♥ RMS 229.7V~ DC + 20mV= THD 0.001%r CF 1.415 PSTinst 0.000 PST 0.000 PLT —	♥ RMS 229.7V~ DC + 20mV= THD 0.001%f 0.001%r CF CF 1.415 PSTinst 0.000 FHL PST 0.000 FK PLT — KF	Image: wide wide wide wide wide wide wide wide	Image: Weight of the system Image: Weight of the system <t< td=""><td>Image: Weight of the system Image: Weight of the system <t< td=""></t<></td></t<>	Image: Weight of the system Image: Weight of the system <t< td=""></t<>		

The L1, L3 and N display filters are similar but concern phase 1, phase 3, and the neutral.

5.7. FRESNEL FUNCTION


The 🄄 function displays:

- the Fresnel diagram of the signals,
- the absolute values of the voltages or currents,
- the phase differences between the voltages or between the currents,
- the level of unbalance and/or the level of reverse unbalance of the voltages or of the current.

Here are a few examples of screens for the Fresnel function, depending on the display filter, for a three-phase, 5-wire connection. To change the display filter, use the ▲ ▼ keys.

3U display filter

Displays the Fresnel diagram of the phase-to-phase voltages. U1 is reference.

3V display filter

Displays the Fresnel diagram of the phase-to-neutral voltages and of the currents. V1 is reference.

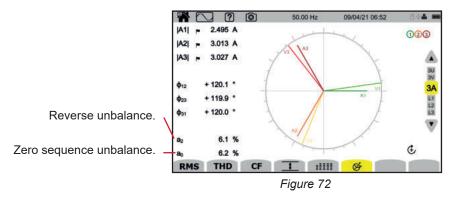
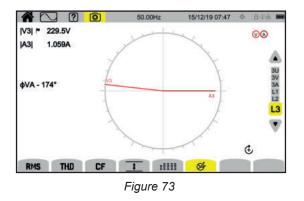


Figure 71

4A display filter

Displays the Fresnel diagram of the currents and of the phase-to-neutral voltages.

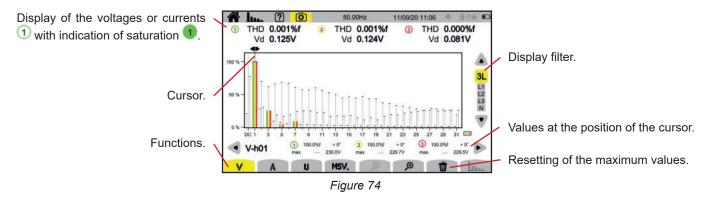

A1 is reference. The choice of current or voltage as reference can be changed in the configuration (see § 3.4.1)).

L3 display filter

Displays the Fresnel diagram of the voltage and of the current of phase 3.

A3 is reference. The choice of current or voltage as reference can be changed in the configuration (see § 3.4.1)).

The L1 and L2 display filters are similar but concern phase 1 and phase 2.


6. HARMONIC

The voltages and currents can be analysed as sum of sine waves at the network frequency and multiples thereof. Each multiple is a harmonic of the signal. It is characterized by its frequency, its amplitude, and its phase difference with respect to the fundamental frequency (network frequency).

If the frequency of one of these sine waves is not a multiple of the fundamental frequency, it is an inter-harmonic

The harmonic mode lime displays a representation in bargraph form of the harmonics, order by order, of the voltage, of the current and of the mains signalling voltage (MSV).

It is used to determine the harmonic currents produced by nonlinear loads and analyse the problems caused by these same harmonics, as a function of their order (overheating of neutrals, of conductors, of motors, etc.).

The different functions are:

- V to display:
- the harmonics, order by order, of the phase-to-neutral voltages,
- the total harmonic distortion, referred to either the RMS value of the fundamental (%f) or the RMS value without DC (%r), depending on what you have configured (see § 3.4.1).
- the distorting phase-to-neutral voltages.

A to display:

- the harmonics, order by order, of the currents,
- the total harmonic distortion, referred to either the RMS value of the fundamental (%f) or the RMS value without DC (%r), depending on what you have configured (see § 3.4.1).
- the distorting currents.

U to display:

- the harmonics, order by order, of the phase-to-phase voltages,
- the total harmonic distortion, referred to either the RMS value of the fundamental (%f) or the RMS value without DC (%r), depending on what you have configured (see § 3.4.1).
- the distorting phase-to-phase voltages.

MSV: to display the spectral level (curve) and RMS values at the MSV1 and MSV2 frequencies configured in § 3.4.1.

 \mathcal{P} : to stretch or shrink the % scale of the barchart.

: when the display filter concerns only one phase (L1, L2, L3, or N), this function is used to view inter-harmonics.

: in the **MSV** function, this function is used to view the profile of the limits of the level of V or of U according to the frequency you configured (see § 3.4.1.).

The numbers of the channels ① are saturation indicators. The interior of the circle is coloured ① when the channel measured is full or when at least one channel used to calculate it is full.

To move the harmonic order cursor, use the ◀ ► keys. When you reach the last harmonic of the screen, if there are more harmonics, you go to the second screen.

To change the display filter, use the \blacktriangle \checkmark keys.

6.1. DISPLAY FILTER

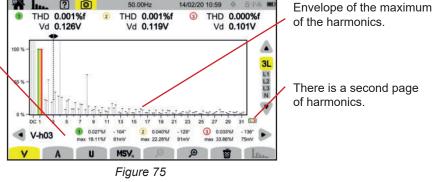
i

The display filter depends on the connection chosen:

Connection	Display filter for V	Display filter for A	Display filter for U	Display filter for MSV
Single-phase, 2 wires	L1 (no choice)	L1 (no choice)	-	L1 (no choice) on V
Single-phase, 3 wires	L1, N	L1, N	-	L1 (no choice) on V
Two-phase, 2 wires	-	L1 (no choice)	L1 (no choice)	L1 (no choice) on U
Two-phase, 3 wires	2L, L1, L2	2L, L1, L2	L1 (no choice)	L1, L2 on V L1 (no choice) on U
Two-phase, 4 wires	2L, L1, L2, N	2L, L1, L2, N	L1 (no choice)	L1, L2 on V L1 (no choice) on U
Three-phase, 3 wires	-	3L, L1, L2, L3	3L, L1, L2, L3	L1, L2, L3 on U
Three-phase, 4 wires	3L, L1, L2, L3	3L, L1, L2, L3	3L, L1, L2, L3	L1, L2, L3 on V and on U
Three-phase, 5 wires	3L, L1, L2, L3, N	3L, L1, L2, L3, N	3L, L1, L2, L3	L1, L2, L3 on V and on U

50.00Hz

6.2. EXAMPLES OF SCREENS

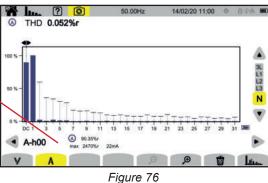

Here are a few examples of screens for a three-phase, 5-wire connection.

hu. ? 🙆

V function with the 3L display filter

Information about harmonic number 3 (pointed to by the cursor):

- level of harmonic (%f or %r),
- phase difference with respect to the harmonic of order 1,
- maximum of the harmonic,
- amplitude of harmonic 3.


14/02/20 10:59

There is a second page

Information about harmonic number 0 (DC), pointed to by the cursor.

- level of harmonic (%r),
- maximum of the harmonic,
- amplitude of harmonic 0.

The period displayed by the barcharts is 200ms or 3s, depending on the configuration chosen in § 3.4.1).

U function with the L1 display filter

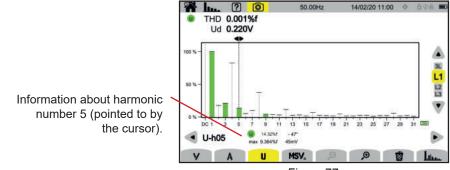
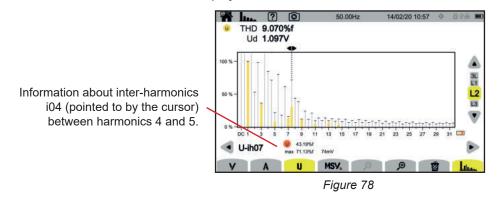



Figure 77

U and Line. function with the L2 display filter

To exit from the function مسئله, press the مسئله key again.

MSV-V function with the L1 display filter

i

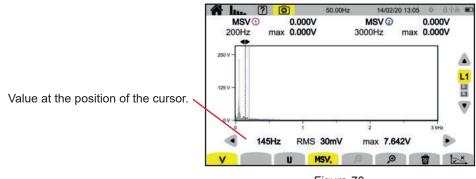
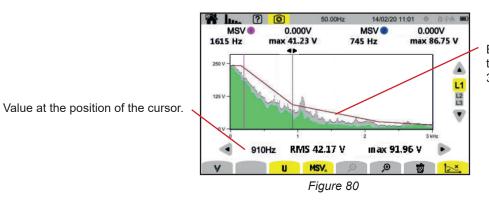



Figure 79

MSV-U curve function with the L1 display filter

i

Envelope of the curve. What is above the envelope is not correct. Refer to § 3.4.1 to parameterize this envelope.

To exit from the **MSV** function, press the **MSV** key again.

7. POWER

The power mode w displays power measurements **W** and power factor calculations **PF**.

7.1. DISPLAY FILTER

The display filter depends on the connection chosen:

Connection	Display filter
Single-phase, 2 wires Single-phase, 3 wires Two-phase, 2 wires	L1 (no choice)
Two-phase, 3 wires Two-phase, 4 wires	2L, L1, L2, Σ
Three-phase, 3 wires	Σ
Three-phase, 4 wires Three-phase, 5 wires	3L, L1, L2, L3, Σ

The Σ filter is used to learn the value on the whole system (on all of the phases).

7.2. EXAMPLES OF SCREENS

Here are a few examples of screens depending on the display filter, for a three-phase, 5-wire connection.

To change the display filter, use the \blacktriangle \checkmark keys.

W function with the 3L display filter

P: active power.	* v	v ? ô	50.00 Hz	19/04/21 11:27 🔅	84 4 ID
Pdc : DC power (if a DC curre sensor is connected). Q _r : reactive power.	ent P(() ► W) - 584.1	<mark>②</mark> ► - 675.8	③ ► - 694.8	Display filter.
D : distorting power.	Q	(var) - 81.8	- 97.5	- 96.8	
N: non-active power.	D	var) + 18.7	+ 43.1	+ 13.4	L1 L2 L3 Σ
S: apparent power.	N (var) + 83.9	+ 106.6	+ 97.7	Ť
	S (VA) 590.1	684.2	701.6	
Fun	ctions.	PF PF			
			=: 0.1		

Figure 81

PF function with the 3L display filter

	w 🍋	? 0	50.00 Hz	13/04/21 12:34	84 % 🗖
PF : power factor = P / S.					
DPF or PF , or cos $\boldsymbol{\varphi}$: fundamental power factor.		() P	② ►	(3) ►	
The name is chosen in the configuration (see § 3.4.1).	PF	- 0.990	- 0.988	- 0.990	
tan $\boldsymbol{\varphi}$: tangent of the phase difference.	DPF	- 0.990	- 0.989	- 0.990	3L
ϕ_{va} : phase difference of the voltage with respect to the current.	tan φ	+ 0.141	+ 0.147	+ 0.139	L1 L2
	φva (°)	- 172.0	- 171.6	- 172.1	L3 Σ
	100-10-100 A				
	w	PF			

Figure 82

L1 display filter

() ()				
P (W)	- 583.2	PF	- 0.990	
PDC (W)	+ 1.5	cos φ	- 0.990	30
Qr (var)	- 81.8	tan φ	+ 0.140	
D (var)	+ 4.8	φ _{VA} (°)	- 172.0	L3
N (var)	+ 82.0			
S (VA)	588.9			
N (var)	+ 82.0	φ _{VA} (°)	- 172.0	

Figure 83

Σ display filter

Sum of the powers in the 3 channels.	
DPF - 0.990 Qr (var) - 0.278 k tan φ + 0.142	
Qr (var) - 0.278 k tan φ + 0.142	
	3L
D (and) = 0.000 h	3L L1 L2 L3 ∑
D (var) + 0.020 k	Σ
N (var) + 0.278 k	V
S (VA) 1.974 k	
WPF	

Figure 84

The energy mode which is used to meter energy, both generated and consumed, over a period of time, and indicate the corresponding price.

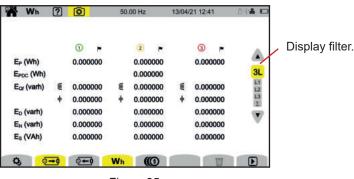


Figure 85

Q: to access the energy configuration.

For it to be possible to change the configuration, there must not be any metering in progress or suspended. It is first necessary to reset the zero.

e energy consumed (by the load).

energy produced (by the source).

(1): price of the energy consumed or produced.

: to reset energy metering to zero.

b: to start energy metering.

: to suspend energy metering.

8.1. DISPLAY FILTER

The display filter depends on the connection chosen:

Connection	Display filter			
Single-phase, 2 wires Single-phase, 3 wires Two-phase, 2 wires	L1 (no choice)			
Two-phase, 3 wires Two-phase, 4 wires	2L, L1, L2, Σ			
Three-phase, 3 wires	Σ			
Three-phase, 4 wires Three-phase, 5 wires	3L, L1, L2, L3, Σ			

The Σ filter can be used to obtain the calculation on the whole system (all phases).

8.2. EXAMPLES OF SCREENS

Here are a few examples of screens depending on the display filter, for a three-phase, 5-wire connection.

To change the display filter, use the \blacktriangle \checkmark keys.

Press **b** to start energy metering.

Wh function with the 3L display filter

	Wh Wh	?	0 🕨	50	.00 Hz	13/04	21 12:44	84 % ()
	□ 13/04/21	12:42						
Starting date and time - of the metering and possibly	E _P (Wh)		① ► 1.944596		② ► 2.154909		③ ► 2.080889	▲ 3L
ending date and time.	Eqr (varh)	W	1.877197	S	2.345577	đ	2.047980	L1 L2 L3
		+	0.000000	÷	0.000000	÷	0.000000	L3 2
	E _D (varh)		58.81343		73.05754		64.04351	
	E _N (varh)		58.84338		73.09517		64.07623	
Energy consumed.	E _s (VAh)	+0	58.87552	Wh	73.12695	_	64.11001	Π
I	N3 9	- 9	<u>0</u>				8	
				Figu	ıre 86			

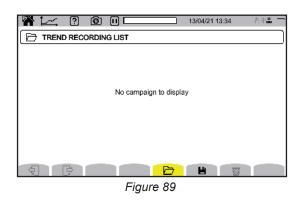
Indication that energy metering is in progress.

Wh function with the L1 display filter

	Wh ? 🔕 🕨 50.00 Hz	13/04/21 12:45 👌 🖓 🖁 💭	
$\begin{array}{l} \textbf{E}_{p}: \text{ active energy.} \\ \textbf{E}_{pDc}: \text{ DC energy (if a DC current sensor is connected).} \\ \textbf{E}_{pr}: \text{ reactive energy (inductive part } \\ \textbf{and capacitive part } \\ \textbf{T}). \\ \textbf{E}_{D}: \text{ distorting energy.} \\ \textbf{E}_{N}: \text{ non-active energy.} \\ \textbf{E}_{s}: \text{ apparent energy.} \end{array}$	Wh ? Q 50.00 Hz © 13/04/21 12:42 © 13/04/21 12:45 V @ Q = 0 P Q = 0 E _P (Wh) 0.000000 27:43204 E _{PDC} (Wh) 0.000000 0.000000 E _Q (varh) § 0.000000 + 0.000000 \$ E _Q (varh) 0.000000 - E _Q (varh) 0.000000 - E _N (varh) 0.000000 - E _N (varh) 0.000000 - Q Image: Comparison of the state o		 Indication that energy metering is suspended. Energy consumed. Energy produced. To reset the values.
	Figure 87		

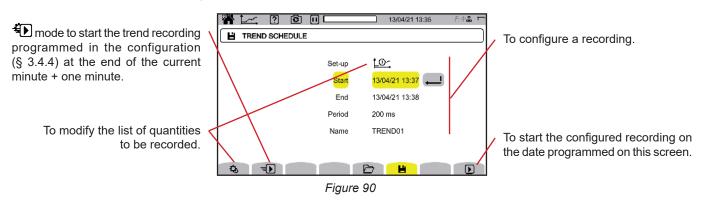
(() function with the Σ display filter

	Wh Wh	?	0 1	50.0	0 Hz	13/04/21 12:45	84 % D
Sum of the energies	13/04/2	1 12:42	© 13/04/2	1 12:45	o∓0 ►		
on the 3 channels.	E _P (€)	0.00		0.01			A
Currency chosen , in the configuration (see § 3.4.8).	Ear (€)	\$ +	0.00 0.00	1007 -	0.00		L1 12 13 Σ
	E ₀ (€) E _N (€)		0.00 0.00 0.00		- 0.00		∇
	E _s (€)	5-+0	0.00	Wh	- 0.01	Ŭ	Þ
				Fiau	re 88		


Figure 88

9. TREND MODE

The trend mode E records the evolution of the quantities chosen in the configuration (see § 3.4.4) for a specified duration.


The CA 8345 can record a large number of trends, limited only by the capacity of the SD card.

The home screen displays a list of the recordings already made. For the moment, there are none.

9.1. START OF A RECORDING

Press on 💾 to schedule a recording.

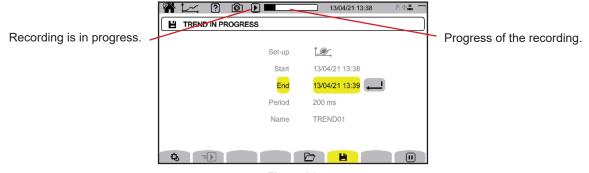
The configuration specifies:

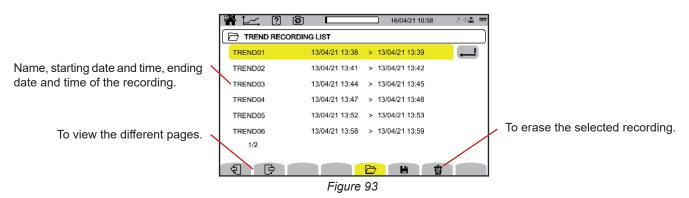
- a list of quantities to be recorded (up to four). Press ^Q to modify the list in progress.
- the starting date and time of the recording,
- the ending date and time of the recording,
- the recording period, between 200ms and 2h, which determines the quality of the zoom. If the recording period exceeds the duration of the recording, the instrument changes the ending date to accommodate the recording period.
- the name of the records.

Press D. Recording starts at the programmed time, if there is enough space on the SD card.

Figure 91

61




Figure 92

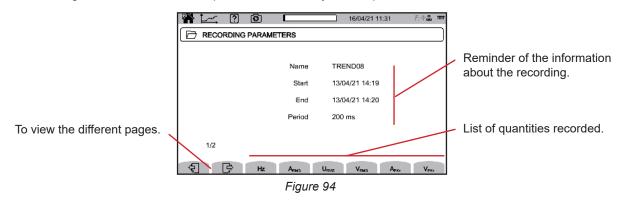
To ensure compliance with IEC 61000-4-30, it is essential that trend recordings are performed with :

- A measurement of the frequency over 10 seconds,
- VRMS, URMS and ARMS selected.

9.2. LIST OF RECORDINGS

Press $\overline{\Box}$ to view the recordings made.

If the ending date is shown in red, it is because recording could not continue up to the planned ending date.


- or because of a power supply problem (the instrument switched off because the battery was low),
- or because there was a write error on the SD card.

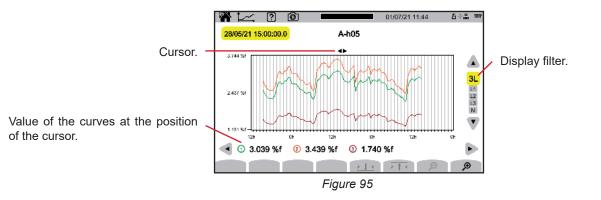
To learn what the error number shown means, use the help key 😰.

To erase all trend recordings at once, refer to § 3.3.4.

9.3. READING A RECORDING

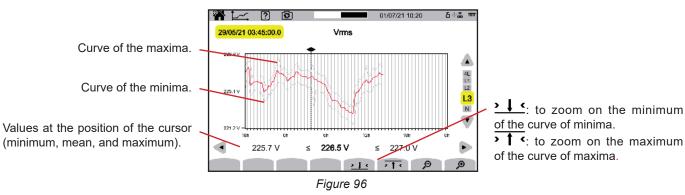
Select the recording to be read in the list and press the confirm key 🕮 to open it.

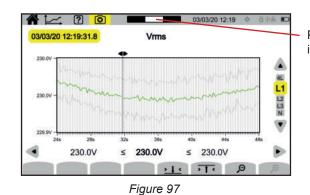
To view the evolution of a quantity, select it.


Below are examples of screens for a three-phase, 5-wire connection. To change the display filter, use the $\blacktriangle \forall$ keys.

The cursor lets you view the values along the curves displayed. To move the cursor, use the $\blacktriangleleft \triangleright$ keys.

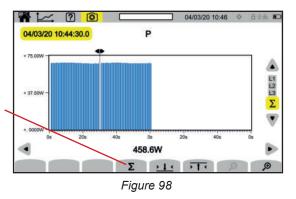
- Solution for the stretch or shrink the time scale. The zoom possibilities depend on the aggregation period and the duration of the recording
- A: reports a problem during recording. If a quantity could not be correctly recorded, this symbol is displayed above all of the quantities.
- When the duration of the recording is long (more than one day), it may take up to about ten seconds to display the curves.
 - The first data will be available at the end of the recording period, or between 200ms and 2h.

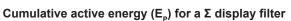

Order 5 current harmonics (A-h05) for a 3L display filter


i

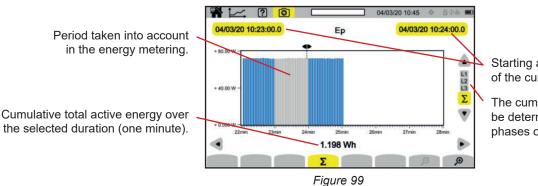
Phase-to-neutral voltages (Vrms) for an L3 display filter

Each time a value is recorded, for each of the phases, the instrument also records the minimum single-cycle RMS value and the maximum single-cycle RMS value. These are the three curves shown in the figure below.

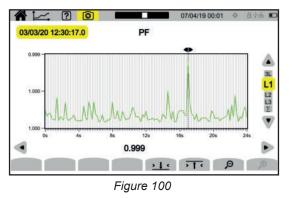



Position of the display window in the recording.

Active power (P) for a display filter **\Sigma**


The power, like the energy, is displayed in barchart form. The duration of a bar is 1 second, or one recording period if it is longer than 1s.

To display the active energy (E_p) .


- Place the cursor on the beginning of the accumulation range.
- Press the Σ key.
- Move the cursor to the end of the energy accumulation range.
- The cumulative total is displayed as it evolves.

Starting and end dates of the cumulative total.

The cumulative total can be determined on each of the phases or on all of the phases.

Power factor (PF) for an L1 display filter

10. TRANSIENT MODE

The transient mode 应 records voltage or current transients for a specified duration determined according to the configuration chosen (see § 3.4.5). It also serves to record shock waves: very high voltages for a very short time.

The CA 8345 can record a large number of transients. This number is limited only by the capacity of the SD card.

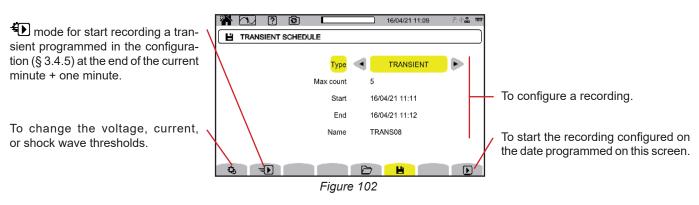
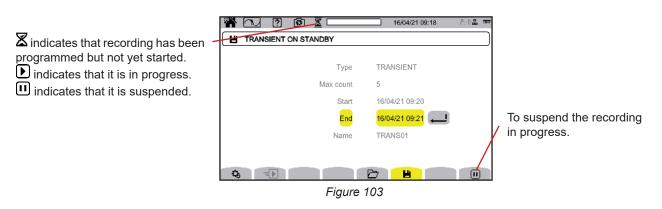

The home screen displays a list of the recordings already made. For the moment, there are none.

Figure 101

10.1. START OF A RECORDING


Press 💾 to schedule a recording.

The configuration specifies:

- whether the recording concerns transients, shock waves, or both,
- the maximum number of transients or shock waves to be recorded,
- the starting date and time of recording,
- the ending date and time of recording,
- the name of the recording.

Press **D**. Recording will start at the programmed time if there is enough space on the SD card.

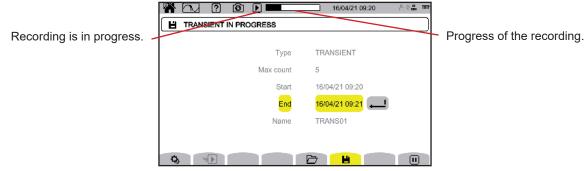
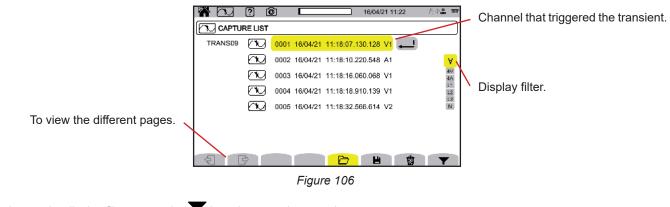


Figure 104

10.2. LIST OF RECORDINGS

Press $\overline{\Box}$ to view the recordings made.

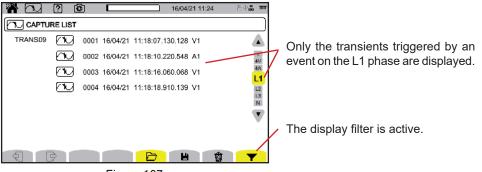
If the ending date is shown in red, it is because recording could not continue up to the planned ending date.


- or because of a power supply problem (the instrument switched off because the battery was low),
- or because the maximum number of transients was reached.
- or because there was a write error on the SD card.

To learn what the error number shown means, use the help key 2.

To erase all recordings of transients at once, refer to § 3.3.4.

10.3. READING A RECORDING

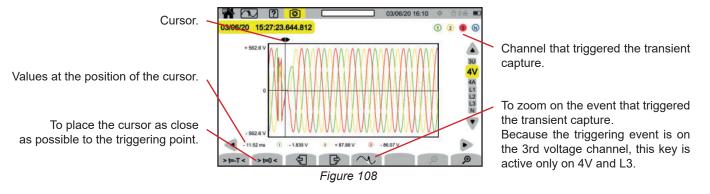

Select the recording to be read in the list and press the confirm key \clubsuit to open it.

To change the display filter, press the \mathbf{Y} key, then use the $\mathbf{A} \mathbf{\nabla}$ keys.

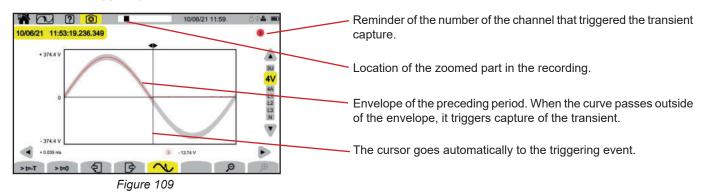
- ∀: to display all of the transients.
- 4 V: to display the transients triggered by an event in one of the 4 voltage channels.
- 4 A: to display the transients triggered by an event in one of the 4 current channels.
- L1, L2 or L3 : to display the transients triggered by a voltage or current event in phase L1, L2, or L3.
- N: to display the transients triggered by a voltage or current event in the neutral.

Confirm by pressing the \mathbf{T} key again.

To display a transient, select it and press the confirm key -


Below are examples of screens for a three-phase, 5-wire connection.

The cursor lets you view the values along the curves displayed. To move the cursor, use the $\blacktriangleleft \triangleright$ keys.


To change the display filter, use the \blacktriangle \checkmark keys.

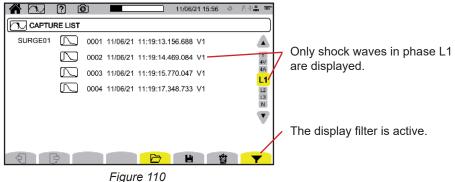
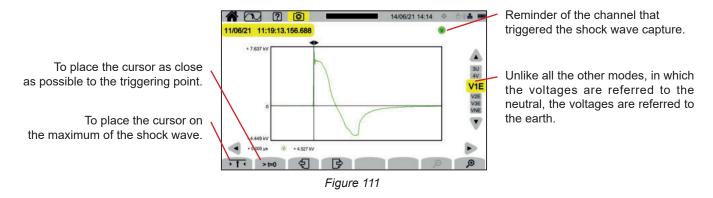
 \mathcal{P} \mathfrak{P} : to stretch or shrink the time scale.

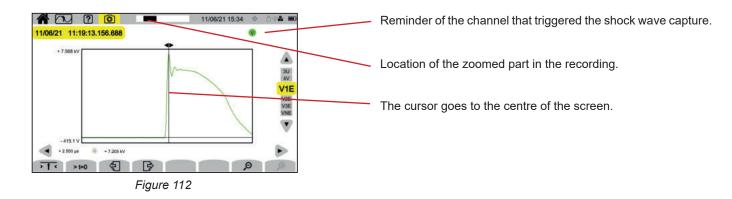
Transient event in all of the voltage channels

Zoom on the triggering event

Shock wave in all of the voltage channels

If you have recorded a shock wave, it will appear when the record is read.


Figure 110

To display the recording of the shock wave, select it and press the confirm key \bigcirc . This screen displays the whole of the captured signal for a duration of 1.024 s. The instant of triggering is at one quarter of the screen.

Zoom on the triggering event or on the maximum value

Press $\rightarrow 1$ to place the cursor on the triggering element or $\rightarrow t=0$ to place the cursor on the maximum. Since the shock wave builds up very quickly, these two points are often very close together. Then press \clubsuit , one or more times, to zoom.

11. INRUSH CURRENT MODE

The inrush current mode E is used to capture and record inrush currents for a duration specified according to the configuration chosen (see § 3.4.6).

The CA 8345 can record a large number of inrush current captures. This number is limited only by the capacity of the SD card.

The home screen displays a list of the captures already made. For the moment, there are none.

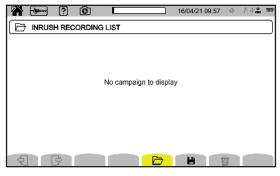
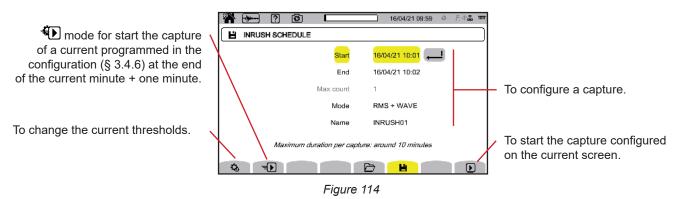



Figure 113

11.1. START OF A CAPTURE

Press 💾 to program a capture.

The configuration specifies:

- the starting date and time of the capture,
- the ending date and time of the capture,
- whether the capture concerns RMS values or RMS values and instantaneous values,
- the name of the capture.

Press D. The capture will start at the programmed time, if the SD card is in place at the time of the press and enough space remains.

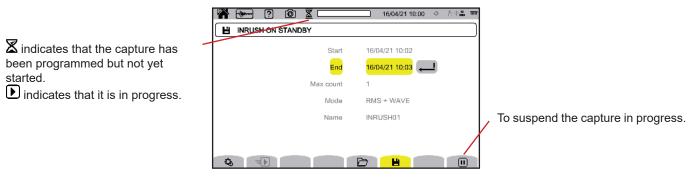


Figure 115

69

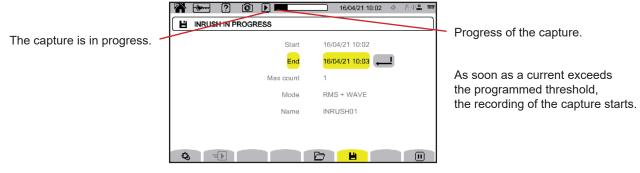


Figure 116

11.2. LIST OF CAPTURES

Press \square to view the captures performed.

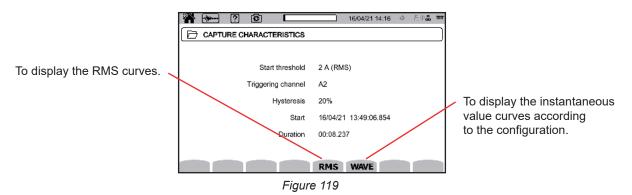
	INRUSH REC		16/04/21 13:50	○ 5%å m	
Name, starting date and time, ending date and time of the capture.	INRUSH01 INRUSH02 INRUSH03	16/04/21 10:02 > 16/04/21 13:49 > 16/04/21 13:59 >	16/04/21 10:03 16/04/21 13:49 16/04/21 14:00		
To view the different pages. 🥆	INRUSH04	16/04/21 14:05 >			To erase the selected capture.
		Figure 11	7		

To erase all of the inrush current captures at once, refer to § 3.3.4.

If the ending date is shown in red, it is because recording could not continue up to the planned ending date.

- or because of a power supply problem (the instrument switched off because the battery was low),
- or because there was a write error on the SD card.

To learn what the error number shown means, use the help key 2.


11.3. READING A CAPTURE

Select the capture to be read in the list and press the confirm key 🕒 to open it. Captures whose ending date is shown in red may be unusable.

Figure 118

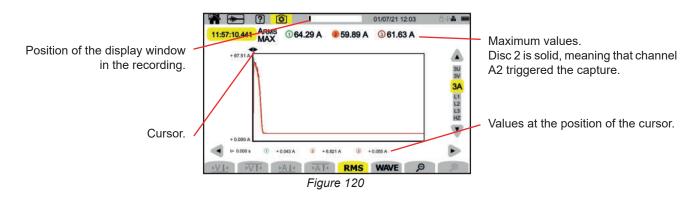
Press the confirm key 🔎 again to display the information about the capture.

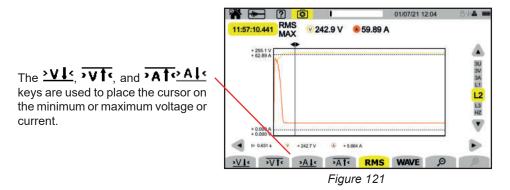
Below are examples of screens for a three-phase, 5-wire connection.

11.3.1. RMS VALUES

Press the RMS key to view the RMS voltage and current values.

To change the display filter, use the \blacktriangle \checkmark keys.


- 3V: to display the 3 phase-to-neutral voltages.
- **3U**: to display the 3 phase-to-phase voltages.
- **3A**: to display the 3 currents.
- L1, L2, L3: to display the current and voltage on phases L1, L2, and L3.
- **Hz**: to display the evolution of the network frequency over time.


The cursor lets you view the values along the curves displayed. To move the cursor, use the $\blacktriangleleft \triangleright$ keys.

 \mathcal{P} \mathcal{P} : to stretch or shrink the time scale.

The maximum duration of an RMS recording is 30 minutes. In this case, it can take up to about ten seconds to display the curves.

Capture of inrush current in RMS on 3A

11.3.2. INSTANTANEOUS VALUES

Press the **WAVE** key to view the instantaneous voltage and current values. This recording displays all of the samples. It is much more precise than **RMS**, which displays only one value per half-cycle.

To change the display filter, use the \blacktriangle V keys.

- 4V: to display the 3 phase-to-neutral voltages and the neutral.
- 3U: to display the 3 phase-to-phase voltages.
- 4A: to display the 3 currents and the current of the neutral.
- L1, L2, L3: to display the current and voltage on phases L1, L2, and L3.
- N: to display the current and the voltage on the neutral.

The cursor lets you view the values along the curves displayed. To move the cursor, use the $\blacktriangleleft \triangleright$ keys.

 \mathcal{P} \mathcal{P} : to stretch or shrink the time scale.

The maximum duration of a RMS+WAVE recording is 10 minutes. In this case, it can take up to a minute to display the curves.

Capture of instantaneous inrush current values on 4A

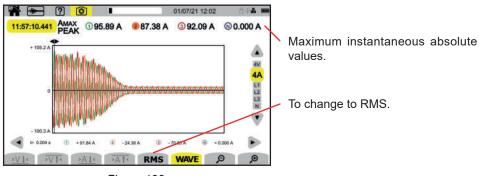


Figure 122

Capture of instantaneous inrush current values on L3

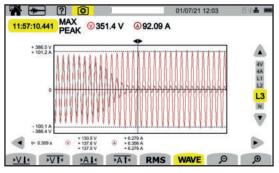


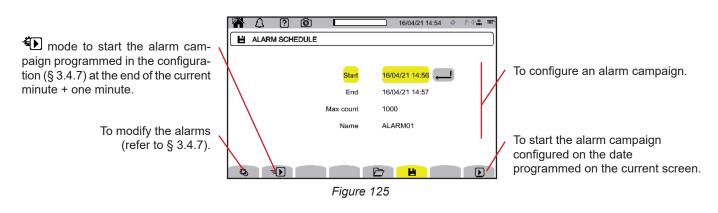
Figure 123

12. ALARM MODE

The alarm mode detects and records overshoots of the quantities chosen in the configuration (see § 3.4.7) for a specified duration.

The CA 8345 can record a large number of alarm campaigns (limited only by the capacity of the SD card), each containing up to 20,000 alarms. You can choose this maximum number in the configuration.

The home screen displays a list of the alarm campaigns already performed. For the moment, there are none.

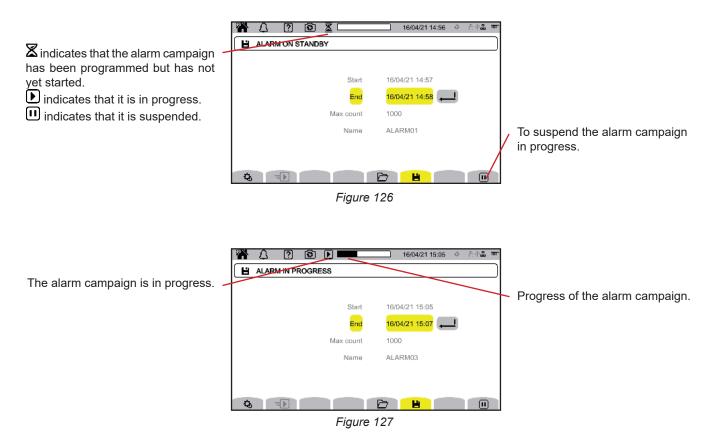

Figure 124

It is not possible to program an alarm campaign if an inrush current capture is in progress.

12.1. START OF AN ALARM CAMPAIGN

Press 💾 to program an alarm campaign.

i



When you modify an alarm, it is deactivated. When you modify an alarm, it is deactivated. Remember to reactivate it.

The configuration specifies:

- the starting date and time of the alarm campaign,
- the ending date and time of the alarm campaign,
- the maximum number of alarms to be recorded in the campaign.
- the name of the alarm campaign.

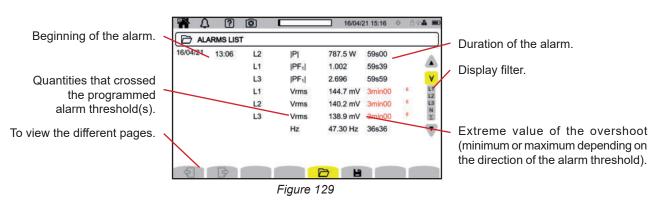
Press **D**. The alarm campaign will start at the programmed time.

12.2. LIST OF ALARM CAMPAIGNS

Press \square to view the alarm campaigns already performed.

To erase all of the alarm campaigns at once, refer to § 3.3.4.

If the ending date is shown in red, it is because recording could not continue up to the planned ending date.


- or because of a power supply problem (the instrument switched off because the battery was low),
- or because there was a write error on the SD card.

To learn what the error number shown means, use the help key 2.

12.3. START OF AN ALARM CAMPAIGN

Select the alarm campaign to be read in the list and press the confirm key 🕮 to open it.

Below is an example of a screen.

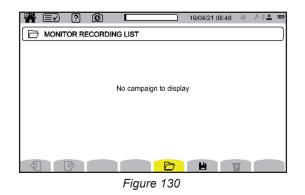
To change the display filter, use the \blacktriangle \checkmark keys.

- ∀: to display the alarms in all channels.
- L1, L2, L3: to display the alarms on phase L1, L2, or L3.
- N: to display the alarms on the neutral.
- **Σ**: to display the alarms on the quantities that can be summed, such as the power

If an alarm duration is displayed in red, it means that it was cut off:

- because the alarm campaign ended while the alarm was in progress,
- or because of a power supply problem (the instrument switched off because the battery was low),
- or because of a manual stoppage of the campaign (III) pressed) or because the instrument was intentionally switched off (U) key pressed).
- or because the memory was full.
- or because of a measurement error.
- or because of an incompatibility between the quantity monitored and the configuration of the instrument (for example if a current sensor is removed).

In the last two cases, the extreme value is also displayed in red. This indicates the existence of an error, with an error number. To learn the meaning of this number, use the help key ?.


The monitoring mode I monitors an electrical network per standard EN 50 160. It detects:

- slow variations,
- rapid variations and interruptions
- voltage dips,
- temporary overvoltages,
- and transients.

A monitoring campaign therefore triggers a trend recording, a search for transients, an alarm campaign, and a log of events.

The CA 8345 can record a large number of monitoring campaigns. This number is limited only by the capacity of the SD card.

The home screen displays a list of the monitoring campaigns already performed. For the moment, there are none.

13.1. START OF A MONITORING CAMPAIGN

The monitoring mode is configured using the PAT3 application software (see § 16).

Once the software has been installed and the instrument connected, go to the Instrument, Configure monitoring menu.

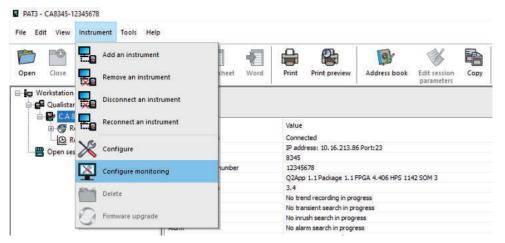


Figure 131

The configuration window opens.

nfigure Instrument		
onitoring Slow Variations Thresholds Rapid Vol	age Changes and Interruptions Dips and swells Transients	
Electrical distribution system: 3-Phase 5-Wire		
EN 50160 monitoring: Nominal voltage < 1000 V	v	Remove selected configuration
Nominal voltage Enter the nominal voltage of the distribution net	THD Calculation work: MAX harmonic used for THD calculation	Save
Phase-to-neutral 230 V (50 - 65	25	Save as
Nominal frequency	Aggregation period (by default)	
● 50 Hz ○ 60 Hz	10 min 🗸	
Consider each phase separately for dips, swe lignaling frequencies to monitor:		
nter name of recording. ame is up to 8 chars and contains "A-Z", "0-9", " IONITO 1	U.	
Schedule a test	10.000 More Server	
	Ending time	
Starting time 24/08/2021 ~ 14:10	31/08/2021 ~ 14:10	

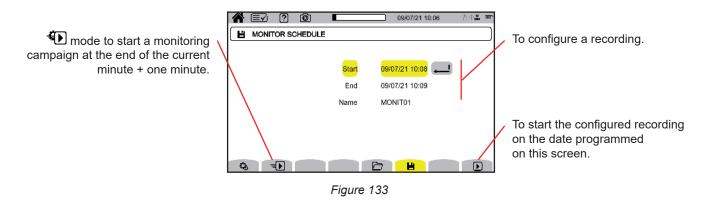
Figure 132

It has 5 tabs:

- Monitoring
- Threshold of slow variations
- Rapid voltage changes and interruptions
- Voltage dips and overvoltages
- Transients

In the Monitoring tab, indicate the nominal voltage, the frequency, and the name of the file that will contain the monitoring campaign.

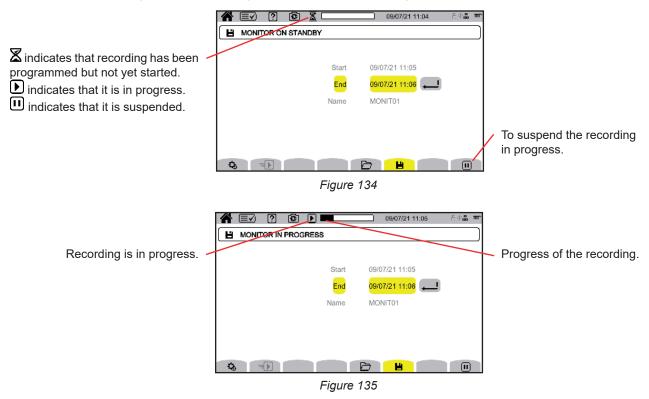
In the **Threshold of slow variations** tab, the maximum variations of the frequency and of the voltages are already specified, as per the standard, for a duration of one week and for the duration of the monitoring campaign. You can modify them or add quantities to be monitored.


The **Rapid variations of voltages and interruptions** tab specifies the duration of interruptions and rapid voltage changes (RVC), which are however slower than transients. You can keep the preset values or modify them.

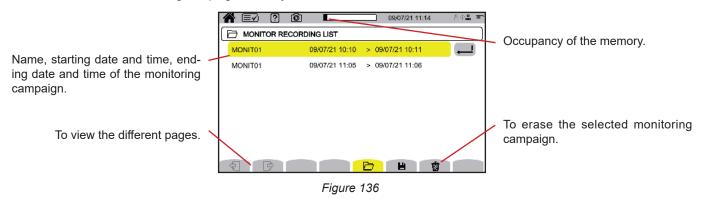
The **Voltage dips and overvoltages** tab specifies the level and duration of the voltage dips and the level and duration of the overvoltages. You can keep the preset values or modify them.

The Transient tab is used to specify a search for transients as on the instrument (see § 3.4.5).

When the monitoring campaign is configured, confirm by pressing OK; the configuration is transferred to the instrument.


Then start the monitoring campaign on the instrument by specifying its starting time and its duration. Press 💾 to program a monitoring campaign.

The configuration specifies:


- the starting date and time of the recording,
- the ending date and time of the recording,
- the name of the records.

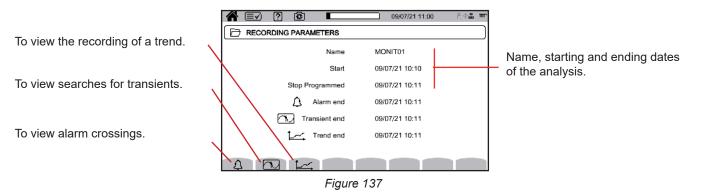
Press **D**. The monitoring will start at the programmed time if there is enough space on the SD card.

13.2. LIST OF MONITORING CAMPAIGNS

Press \square to view the monitoring campaigns already done.

If the ending date is shown in red, it is because recording could not continue up to the planned ending date.

- or because of a power supply problem (the instrument switched off because the battery was low),
- or because the maximum number of transients was reached,
- or because there was a write error on the SD card.


To learn what the error number shown means, use the help key 😰.

To erase all of the monitoring campaigns at once, refer to § 3.3.4.

13.3. READING A MONITORING CAMPAIGNS

Select the analysis to be read in the list and press the confirm key to open it.

Below is an example of a screen.

To read an alarm campaign, refer to § 12.3.

To read a search for transients, refer to § 10.3.

To read a trend recording, refer to § 9.3.

For slow variations, rapid changes, interruptions, voltage dips, and overvoltages, the recordings are in PAT3 in **My recorded** sessions.

The (a) key is used to make screenshots and to view the recorded screenshots.

Screenshots are recorded on the SD card in directory 8345\Photograph. They can also be read on the PC using the PAT3 software or using an SD card reader (not provided).

14.1. SCREENSHOT

You can make a screenshot in two ways:

- Long-press the ⓐ key and keep it pressed.
- The 🙆 symbol in the status bar turns yellow 🙆, then black 🕥. You can then release the 阃 key.
- Press the Symbol in the status bar, at the top of the display unit. The Symbol in the status bar turns yellow S, then grey.

Screens that are likely to vary (curves, metering) are captured in bursts (up to five). This lets you choose the one that suits you best.

It is then necessary to wait a few seconds between screenshots, long enough for them to be recorded and for the 🙆 symbol in the status bar to turn grey again.

The number of screenshots the instrument can record depends on the capacity of the SD card. Single photographs (fixed screen) consume about 150 kB and multiple photographs (variable screen) consume approximately 8 MB. This means that the SD card provided can hold several thousand screenshots.

Then refer to § 3.3.4 for the procedure for total or partial erasure of the contents of the SD card.

14.2. MANAGEMENT OF SCREENSHOTS

To enter the screenshots mode, short-press the is key.

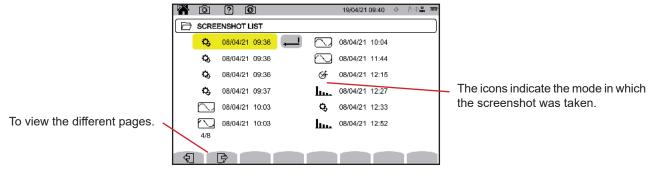


Figure 138

14.2.1. DISPLAY OF A SCREENSHOT

To display a screenshot, select it and press the confirm key 🕮. The instrument displays the available photograph(s).

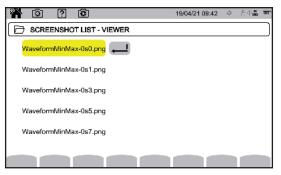


Figure 139

Select a screenshot and confirm *—*.

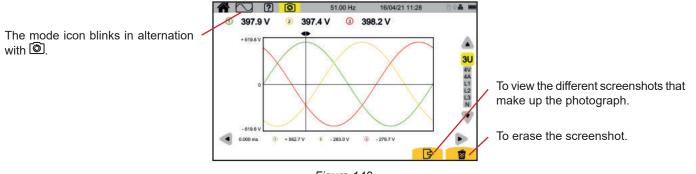
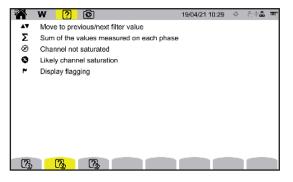


Figure 140


15. HELP

The 2 key gives you access to information about the functions of the keys and the symbols used for the display mode in progress.

Here's an example of a help screen in the power mode:

Reminder of the mode.	W PF	. W ? & Display powers Display power-derived values	19/04/21 10:26	\$ 后中〓	ш
There are 3 help pages.		B B			
		Figure 141			

The first page indicates the two possible functions. The second page describes the display functions and the third defines the symbols.

W?愈
 19/04/21 10:30 ④ 产业量 m
 P Active power
 Q₄ Reactive power
 D Distortion power
 N Non-active power
 S Apparent power
 S Apparent power

Figure 142

Figure 143

And an example of a waveform help screen.

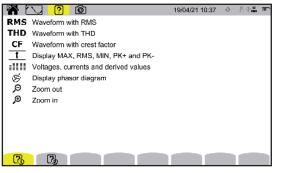


Figure 144

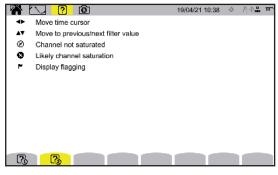


Figure 145

The PAT3 (Power Analyser Transfer 3) application software is used to:

- configure the instrument and the measurements,
- start the measurements,
- transfer the data recorded in the instrument to a PC.

PAT3 can also be used to export the configuration to a file and to import a configuration file.

16.1. OBTAIN THE PAT3 SOFTWARE

You can use the PAT3 software provided on the USB drive or you can download the latest version from our web site: www.chauvin-arnoux.com

Go to the Support tab, then Download our software.

Then search on the name of your instrument.

Download the software

To install it, run the set-up.exe file, then follow the instructions on screen.

Then remove the cover that protects the USB port of the instrument and connect the instrument to the PC using the USB cord provided.

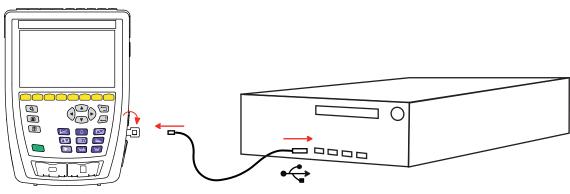



Figure 146

Switch the instrument on by pressing the \bigcirc button and wait for your PC to detect it.

All measurements recorded in the instrument can be transferred to the PC. The transfer does not erase the data recorded in the SD card unless you explicitly ask it to.

The data stored in the memory card can also be read on the PC using the PAT3 software or using an SD card reader (not provided). To withdraw the memory card from the instrument, refer to § 3.3.4.

The device CA 8345 is compliant with standard IEC 61000-4-30 class A.

17.1. REFERENCE CONDITIONS

	Quantity of influence	Reference conditions	
	Ambient temperature	23 ± 3°C	
	Relative humidity	40 to 75% RH	
	Atmospheric pressure	860 to 1060 hPa	
Environmental conditions	Electric field	 < 1 V/m from 80 to 1000 MHz ≤ 0.3 V/m from 1 to 2 GHz ≤ 0.1 V/m from 2 to 2.7 GHz 	
	Magnetic field	< 40 A/m DC (earth's magnetic field) < 3 A/m AC (50/60 Hz)	
	Phases	3 phases available (for three-phase systems)	
	DC components of voltage and current	No	
	Form of the signal	Sine wave	
	Frequency of the electrical network	50 ± 0.5 Hz or 60 ± 0.5 Hz	
	Amplitude of the voltage	U _{din} ± 1% Phase-to-neutral voltage between 100 and 400 V Phase-to-phase voltage between 200 and 1000 V	
	Flicker	P _{st} < 0,1	
	Voltage unbalance	$u_0 = 0 \%$ and $u_2 = 0 \%$ Phase modulus: 100 % ± 0,5 % U _{din} Phase angles: L1 0 ± 0.05°, L2 -120 ± 0.05°, L3 12 ± 0.05°	
Characteristics	Harmonics	< 3% U _{din}	
of the electrical	Inter-harmonics	< 0.5% U _{din}	
system	Input voltage on the current terminals (current sensors except Flex®)	30 to 1000 mVRMs without DC ■ 1 VRMs <=> A _{nom} ⁽¹⁾ ■ 30 mVRMs <=> 3 × A _{nom} ⁽¹⁾ / 100	
	Input voltage on current terminals for AmpFlex® and MiniFlex® sensors, 10 kA range	11.73 to 391 mVRMs without DC ■ 11,73 mVRMs at 50 Hz <=> 300 ARMs ■ 391 mVRMs at 50 Hz <=> 10 kARMs	
	Input voltage on current terminals for AmpFlex [®] and MiniFlex® sensors, 1000 A range	 1.173 to 39.1 mVRMs without DC 1,173 mVRMs at 50 Hz <=> 30 ARMs 39,1 mVRMs at 50 Hz <=> 1000 ARMs 	
	Input voltage on current terminals for AmpFlex® and MiniFlex® sensors, 100 A range	 117.3 à 3910 μVRMs without DC 117.3 μVRMs at 50 Hz <=> 3 ARMS 3.91 mVRMs at 50 Hz <=> 100 ARMs 	
	Phase difference	0° (active power and energy) 90° (reactive power and energy)	
	Voltage ratio	1	
	Current ratio	1	
Configuration	Voltages	measured (not calculated)	
of the instrument	Current sensors	real (not simulated)	
	Auxiliary power supply voltage	230 V ± 1% or 120 V ± 1%	
	Instrument warm-up	1 h	

Table 1

1: The values of ${\rm A_{\rm nom}}$ are given in the following table.

Nominal current $\mathbf{A}_{_{\text{nom}}}$ depending on the sensor

Current sensor	Nominal RMS current A _{nom} (A)	Full-scale technical RMS per class A (A) (2)	Full-scale commercial RMS per class A (A) (3)
AmpFlex [®] A193 and MiniFlex [®] MA194	100 1000 10,000	14.14 to 16.97 141.42 to 169.71 1414.21 to 1697.06 ⁽¹⁾	30 A 300 A 3000 A ⁽¹⁾
J93 clamp	3500	1650 to 1980	1800
C193 clamp	1000	471 to 566	500
PAC93 clamp	1000	471 to 566	500
MN93 clamp	200	94.3 to 113	100
MINI94 clamp	200	94.3 to 113	100
MN93A clamp (100 A)	100	47.1 to 56.6	50
E3N, E27 or E94 clamp (10 mV/A)	100	47.1 to 56.6	50
E3N, E27 or E94 clamp (100 mV/A)	10	3.54 to 4.24	4
MN93A clamp (5 A)	5	1.77 to 2.12	2
Three-phase 5 A adapter	5	1.77 to 2.12	2
Essailec [®] 5A three-phase adapter	5	1.77 to 2.12	2

Table 2

- 1: Flex[®] type current sensors do not guarantee Class A at full scale. This is because they generate a signal proportional to the differential coefficient of the current, and the scale factor can easily reach 3, 3.5, or 4 if the signal is not sinusoidal.
- 2: Calculation formulas

Lower value	Upper value
$\frac{\sqrt{2}}{CF_{Class-A}} x A_{nom}$	$1.2 \times \frac{\sqrt{2}}{CF_{Class-A}} \times A_{nom}$

The factor 1.2 follows from the capacity of the current input of the instrument to accept 120% of A_{nom} with a sinusoidal signal. $A_{nom} \le 5 A => CF_{Class-A} = 4$ $5 A < A_{nom} \le 10 A => CF_{Class-A} = 3.5$ $10 A < A_{nom} => CF_{Class-A} = 3$

3: The commercial full scale RMS value is chosen inside the technical full scale.

17.2. ELECTRICAL CHARACTERISTICS

17.2.1. CHARACTERISTICS OF THE INPUT VOLTAGE

Range of use	0 VRMs to 1000 VRMs phase-neutral and neutral-earth 0 VRMs to 1700 VRMs phase-phase, without exceeding 1000 VRMs with respect to earth
Input impedance	2 M Ω (between phase and neutral and between neutral and earth)
Permanent overload	1200 VRMs phase-neutral and neutral-earth
Temporary overload	12,000 VRMs phase-neutral and neutral-earth, 278 pulses per second at most

17.2.2. CHARACTERISTICS OF THE CURRENT INPUT

Range of use	0 to 1 VRMS with CF = $\sqrt{2}$ except Flex [®]
	0 to (0.391 x f _{nom} / 50) VRMS with CF = $\sqrt{2}$ for the Flex [®]
Input impedance	1 MΩ except Flex [®]
	12.5 k Ω for the Flex [®]
Maximum input voltage	1.2 VRMS with CF = $\sqrt{2}$
Permanent overload	1.7 VRMS with CF = $\sqrt{2}$

17.2.3. PASS BAND AND SAMPLE

S/s: sample per second Spc: sample per cycle

The pass band and the sample (S = sample) are:

- 88 kHz and 400 kS/s for the voltage channels
- 20 kHz and 200 kS/s for the current channels
- 200 kHz and 2 MS/s for shock waves

There are two streams of data used for metrology: 40 kS/s and 512 spc (samples per cycle).

- Waveform RMS:
 - 3U, 4V, 4A filters: 512 spc stream
 - L1, L2, L3, N filters: 512 spc stream, except for the Min and Max curves: 400 kS/s for V and U, 200 kS/s for I.
- Waveform Min- Max:
 - RMS measurements: 512 spc stream
 - Max, Min, Pk+, Pk- measurements: 40 kS/s stream
- Transients:
 - 3U, 4V, 4A filters: 512 spc stream
 - L1, L2, L3, N filters: 512 spc stream, except for the Min and Max curves: 400 kS/s for V and U, 200 kS/s for I.
- Shock wave: 2 MS/s / 500 ns (Waveform and events), up to 12 kV
- Inrush current:
 - Curves: 512 spc stream
 - Measurements: 40 kS/s stream (RMS¹/₂ measurements)
- Harmonics: 512 spc stream
- Power and energy: 40 kS/s stream
- Trend and alarm: 512 spc or 40 kS/s, depending on the quantities:
 - RMS values, flicker, tan φ, harmonics, inter-harmonics, unbalances, harmonic distortions: 512 spc stream
 Industrial frequency, power and energy measurements: 40 kS/s stream

17.2.4. CHARACTERISTICS OF THE INSTRUMENT ALONE (WITHOUT CURRENT SENSOR)

17.2.4.1. CURRENTS AND VOLTAGES

Measurement			ange without ratio nity ratio)	Display resolution	Maximum intrinsic
		Minimum	Maximum	(with unity ratio)	error
Freq	uency	42.50 Hz	69.00 Hz	10 mHz	±10 mHz
		5.000 V	9,999 V ⁽¹⁾	4 digits	±(0.1% + 100 mV)
	phase-to-neutral	10.00 V	600.0 V	4 digits	±(0,1 % U _{din})
Voltage		600.1 V	1,000 V	4 digits	±(0.1% + 1 V)
RMS ⁽⁴⁾		5.000 V	19.999 V (1)	4 digits	±(0.1% + 100 mV)
	phase-to-phase	20.00	1,500 V	4 digits	±(0,1 % U _{din})
		1,501 V	2,000 V	4 digits	±(0.1% + 1 V)
		5.000 V	999.9 V	4 digits	±(0.5% + 500 mV)
DOwelland	phase-to-neutral	1,000 V	1,200 V (2)	4 digits	±(0.5% + 1 V)
DC voltage	phase-to-phase	5.000 V	999.9 V	4 digits	±(0.5% + 500 mV)
		1,000 V	2,400 V (2)	4 digits	±(0.5% + 1 V)
	phase-to-neutral	2.000 V	1,000 V	4 digits	±(0.5% + 500 mV)
Distorting RMS ¹ ⁄ ₂	phase-to-phase -	2.000 V	999.9 V ⁽¹⁾	4 digits	±(0.5% + 500 mV)
140072		1,000 V	2000 V (1)	4 digits	±(0.5% + 1 V)
		2.000 V	999.9 V	4 digits	±(1.5% + 500 mV)
Distorting	phase-to-neutral	1,000 V	1414 V (3)	4 digits	±(1.5% + 1 V)
voltage	where to where	2.000 V	999.9 V	4 digits	±(1.5% + 500 mV)
	phase-to-phase	1,000 V	2828 V (3)	4 digits	±(1.5% + 1 V)
Instantaneous sensation of flicker (P _{inst max})		0.000	12,00 (5)	4 digits	± 8%
Severity of short-term flicker (P _{st})		0.000	12,00 (5)	4 digits	Max ±(5%; 0.05)
Severity of long-term flicker (P _{II})		0.000	12,00 (5)	4 digits	Max ±(5%; 0.05)
Crest factor (CF)		1.000	9.999	4 digits	±(1% + 5 pt) CF < 4
(voltage and current)	1.000	0.000		±(5% + 2 pt) CF ≥ 4

1: Provided that the voltages between the individual terminals and earth do not exceed 1000 VRMs.

 Provided that the voltages between the individual terminals and earth do not exceed roos (1000 roos).
 Limitation of voltage inputs.
 1000 x √2 ≈ 1414; 2000 x √2 ≈ 2828.
 Total RMS value and RMS value of the fundamental.
 The limits specified in IEC 61000-3-3 are: P_{st} < 1,0 and P_{it} < 0,65. Values greater than 12 are unrealistic and no uncertainty is specified for them.

Measurement			nge without ratio ity ratio)	Display resolution	Maximum intrinsic	
	Γ	Minimum	Maximum	(with unity ratio)	error	
		3.000 A	164.9 A	4 digits	±(0.5% + 200 mA)	
	J93 clamp	165.0 A	1980 A	4 digits	±0.5 % ⁽⁶⁾	
		1981 A	3500 A	4 digits	±(0.5% + 1 A)	
		1.000 A	47.09 A	4 digits	±(0.5% + 200 mA)	
	C193 clamp PAC93 clamp	47.10 A	566.0 A	4 digits	±0.5 % ⁽⁶⁾	
		566.1 A	1,000 A	4 digits	±(0.5% + 200 mA)	
		200.0 mA	9.429 A	4 digits	±(0.5% + 20 mA)	
	MN93 clamp	9.430 A	113.0 A	4 digits	±0.5 % ⁽⁶⁾	
		113.1 A	200.0 A	4 digits	±(0.5% + 200 mA)	
	E3N. E27 or E94	100.0 mA	4.709 A	4 digits	±(0.5% + 20 mA)	
	clamp (10 mV/A)	4.710 A	56.60 A	4 digits	±0.5 % ⁽⁶⁾	
	MN93A clamp (100 A)	56.61 A	100.0 A	4 digits	±(0.5% + 200 mA)	
		10.00 mA	353.9 mA	4 digits	±(0.5% + 2 mA)	
	E3N, E27 or E94 clamp (100 mV/A)	354.0 mA	4.240 A	4 digits	±0.5 % ⁽⁶⁾	
RMS current (4)		4.241 A	10.00 A	4 digits	±(0.5% + 10 mA)	
RIVIS CUITEIL	MN93A clamp (5 A)	5.000 mA	176.9 mA	4 digits	±(0.5% + 2 mA)	
	5 A adapter	177.0 mA	2.120 A	4 digits	±0.5 % ⁽⁶⁾	
	Essailec [®] adapter	2.121 A	5.000 A	4 digits	±(0.5% + 2 mA)	
		50.0 mA	9.429 A	4 digits	±(0.5 % + 20 mA)	
	MINI94 clamp	9.430 A	113.0 A	4 digits	±0.5 % ⁽⁶⁾	
		113.1 A	200.0 A	4 digits	±(0.5 % + 200 mA)	
	AmpFlex [®] A193	10.00 A	299.9 A	4 digits	±(0.5% + 3 A)	
	MiniFlex [®] MA194	300.0 A	3,000 A	4 digits	±0.5 % ⁽⁶⁾	
	(10 kA)	3001 A	10,000 A	4 digits	±(0.5% + 3 A)	
	AmpFlex [®] A193	1.000 A	29.99 A	4 digits	±(0.5% + 0.5 A)	
	MiniFlex® MA194	30.00 A	300.0 A	4 digits	±0.5 % ⁽⁶⁾	
	(1000 A)	300.1 A	1,000 A	4 digits	±(0.5% + 0.5 A)	
	AmpFlex [®] A193	100.0 mA	2.999 A	4 digits	±(0.5% + 100 mA)	
	MiniFlex [®] MA194	3.000 A	30.00 A	4 digits	±0.5 % ⁽⁶⁾	
	(100 A)	30.01 A	100 A	4 digits	±(0.5% + 3 A)	
	J93 clamp	3 A	5000 A	4 digits	±(1% + 1 A)	
	PAC93 clamp	1 A	1300 A ⁽¹⁾	4 digits	±(1% + 1 A)	
DC current	E3N, E27 or E94 clamp (10 mV/A)	100 mA	100 A ⁽¹⁾	4 digits	±(1% + 100 mA)	
	E3N, E27 or E94 clamp (100 mV/A)	10 mA	10 A ⁽¹⁾	4 digits	±(1% + 10 mA)	

4: Total RMS value and RMS value of the fundamental.

6: The intrinsic uncertainty of class A is \pm 1%.

Measurement		Measurement ra (with un	nge without ratio ity ratio)	Display resolution	Maximum intrinsic
			Maximum	(with unity ratio)	error
	J93 clamp	1.000 A	3500 A	4 digits	±(1% + 1 A)
	C193 clamp PAC93 clamp	1.000 A	1000 A	4 digits	±(1% + 1 A)
	MN93 clamp	200.0 mA	200.0 A	4 digits	±(1% + 1 A)
	E3N, E27 or E94 clamp (10 mV/A) MN93A clamp (100 A)	100.0 mA	100.0 A	4 digits	±(1% + 100 mA)
	E3N, E27 or E94 clamp (100 mV/A)	10.00 mA	10.00 A	4 digits	±(1% + 10 mA)
Distorting RMS½ ⁽⁸⁾	MN93A clamp (5 A) 5 A adapter Essailec [®] adapter	5.000 mA	5.000 A	4 digits	±(1% + 10 mA)
	MINI94 clamp	50.0 mA	200.0 A	4 digits	±(1 % + 1 A)
	AmpFlex [®] A193 MiniFlex [®] MA194 (10 kA)	10.00 A	10.00 kA	4 digits	±(2.5% + 5 A)
	AmpFlex [®] A193 MiniFlex [®] MA194 (1000 A)	10.00 A	1000 A	4 digits	±(2.5% + 5 A)
	AmpFlex [®] A193 MiniFlex [®] MA194 (100 A)	100.0 mA	100.0 A	4 digits	±(2.5% + 200 mA)
	J93 clamp	1.000 A	4950 A (7)	4 digits	±(1% + 2 A)
	C193 clamp PAC93 clamp	1.000 A	1414 A ⁽⁷⁾	4 digits	±(1% + 2 A)
	MN93 clamp	200.0 mA	282.8 A (7)	4 digits	±(1% + 2 A)
	E3N, E27 or E94 clamp (10 mV/A) MN93A clamp (100 A)	100.0 mA	141.4 A ⁽⁷⁾	4 digits	±(1% + 200 mA)
	E3N, E27 or E94 clamp (100 mV/A)	10.00 mA	14.14 A ⁽⁷⁾	4 digits	±(1% + 20 mA)
Peak current (PK)	MN93A clamp (5 A) 5 A adapter Essailec® adapter	5.000 mA	7.071 A ⁽⁷⁾	4 digits	±(1% + 20 mA)
	MINI94 clamp	50.0 mA	282.8 A (7)	4 digits	±(1 % + 2 A)
	AmpFlex [®] A193 MiniFlex [®] MA194 (10 kA)	10.00 A	14.14 kA ⁽⁷⁾	4 digits	±(3% + 5 A)
	AmpFlex [®] A193 MiniFlex [®] MA194 (1000 A)	10.00 A	1414 kA ⁽⁷⁾	4 digits	±(3% + 5 A)
	AmpFlex® A193 MiniFlex® MA194 (100 A)	100.0 mA	141.4 A ⁽⁷⁾	4 digits	±(3% + 600 mA)
			Tahla 3		

Table 3

7: 3500 x √2 ≈ 4950; 1000 x √2 ≈ 1414; 200 x √2 ≈ 282.8; 100 x √2 ≈ 141.4; 10 x √2 ≈ 14.14; 10000 x √2 ≈ 14140; 6500 x √2 ≈ 9192;
8: RMS½: RMS values of the voltages measured in 1 cycle, starting at a zero crossing of the fundamental, refreshed at each half-cycle.

17.2.4.2. POWER AND ENERGY

Measurement			range without ratio unity ratio)	Display resolution (with unity ratio) (11)	Maximum intrinsic	
			Maximum	(with unity ratio) ("	error	
	Without Flex®	1.000 W ⁽³⁾	10.00 MW ⁽⁴⁾	4 digits ⁽⁵⁾	±(1% + 10 pt) cos φ ≥ 0,8	
Active power (P) ⁽¹⁾		1.000 W		4 digits 🕬	$\pm (1.5\% + 10 \text{ pt})$ $0.2 \le \cos \varphi < 0.8$	
(Г) `'	AmpFlex®	1.000 W ⁽³⁾	10.00 MW ⁽⁴⁾	4 digits ⁽⁵⁾	±(1% + 10 pt) cos φ ≥ 0,8	
	MiniFlex®	1.000 W 0		4 digits 🖓	±(1.5% + 10 pt) 0,5 ≤ cos φ < 0,8	
	Without Flex®	1.000 var ⁽³⁾	10.00 Mvar (4)	4 digits ⁽⁵⁾	±(1% + 10 pt) sin φ ≥ 0,5 and THD ≤ 50%	
Reactive power $(Q_f)^{(2)}$					$\pm (1.5\% + 10 \text{ pt})$ 0,2 ≤ $ \sin \varphi < 0,5 \text{ and THD} \le 50\%$	
and non-active power (N)	AmpFlex®	1.000 var ⁽³⁾	10.00 Mvar ⁽⁴⁾	10.00 Mvar ⁽⁴⁾ 4 digits ⁽⁵⁾	±(1.5% + 10 pt) sin φ ≥ 0,5 and THD ≤ 50%	
	MiniFlex® 1.000 val 0/ 10.00 liver 0/ 4 digits 0/		$\pm (1.5\% + 20 \text{ pt})$ 0,2 ≤ sin φ < 0,5 and THD ≤ 50%			
		1.000 var ⁽³⁾	10.00 M (4)	A -1 ¹ - 1 ⁴ - (5)	±(2 % S +(0,5 % n _{max} + 50 pt) THD _A ≤ 20 %f and sin φ ≥ 0,2	
Distorting power	Distorting power (D) ⁽⁷⁾		10.00 Mvar ⁽⁴⁾	4 digits ⁽⁵⁾	±(2 % S +(0,7 % n _{max} + 10 pt) THD _A > 20 %f and sin φ ≥ 0,2	
Apparent power	(S)	1.000 VA (3)	10.00 MVA (4)	4 digits (5)	±(1% + 10 pt)	
DC power (Pdc)		1.000 W ⁽⁸⁾	6.000 MVA ⁽⁹⁾	4 digits ⁽⁵⁾	±(1% + 10 pt)	
Power factor (PF)	-1	1	0.001	$\pm (1.5\% + 10 \text{ pt})$ $ \cos \varphi \ge 0,2$	
		Without Flex®	1 Wh	9 999 999 MWh ⁽⁶⁾	up to 7 digits ⁽⁵⁾	$\pm (1\% + 10 \text{ pt})$ $ \cos \varphi \ge 0.8$
Active			9 999 999 MWW		$\pm (1.5\% + 10 \text{ pt})$ $0,2 \le \cos \varphi < 0,8$	
energy (E _P) ⁽¹⁾	AmpFlex®	1 Wh	9 999 999 MWh ⁽⁶⁾	up to 7 digits ⁽⁵⁾	$\pm (1\% + 10 \text{ pt})$ cos φ ≥ 0.8	
	MiniFlex®		9 999 999 MWII (*)		$\pm (1.5\% + 10 \text{ pt})$ $0,5 \le \cos \varphi < 0.8$	
	Except Flex®	1 varh	9 999 999 Mvarh ⁽⁶⁾	up to 7 digits ⁽⁵⁾	±(1% + 10 pt) sin φ ≥ 0,5 and THD ≤ 50%	
Reactive energy	Except Hex	i vani	9 999 999 Wivan O		$\pm (1.5\% + 10 \text{ pt})$ 0,2 ≤ sin φ < 0,5 and THD ≤ 50%	
(E _{Qf}) ⁽²⁾ and non-active energy (E _N) ⁽²⁾	AmpFlex®	1 yorb	9 999 999 Myarh ⁽⁶⁾	up to 7 digits ⁽⁵⁾	\pm (1.5% + 10 pt) sin φ ≥ 0,5 and THD ≤ 50%	
	MiniFlex [®] 1 varh 9 999 999 Mvarh ⁽⁶⁾ up			$\pm (1.5\% + 20 \text{ pt})$ 0,2 ≤ sin ϕ < 0,5 and THD ≤ 50%		
Distorting opprav		1 varh	9 999 999 Myarh ⁽⁶⁾	up to 7 digits ⁽⁵⁾	\pm (2 % S +(0,5 % n _{max} + 50 pt) THD _A ≤ 20 %f and sin φ ≥ 0,2	
Distorting energy	(L _D)		9 999 999 Wivaili (9	up to r algits (*)	\pm (2 % S +(0,7 % n _{max} + 10 pt) THD _A ≤ 20 %f and sin φ ≥ 0,2	
Apparent energy	(E _s)	1 VAh	9 999 999 MVAh ⁽⁶⁾	up to 7 digits (5)	±(1% + 10 pt)	
DC energy (E _{PDC})		1 Wh	9 999 999 MWh (10)	up to 7 digits (5)	±(1% + 10 pt)	

Table 4

1: The uncertainties on the active power and energy measurements are greatest at $|\cos \varphi| = 1$ and typical for the other phase differences.

2: The uncertainties on the reactive power and energy measurements are greatest at $|\sin \varphi| = 1$ and typical for the other phase differences.

3: For the MN93A clamps (5 A) or the 5 A adapters.

4: For the AmpFlex[®] and the MiniFlex[®] and for a single-phase, 2-wire connection.

6: The energy corresponds to more than 114 years of the associated maximum power with unity ratios.

7: n_{max} is the highest order of which the harmonic level is not zero. THD_A is the THD of the current.

8: For 100 mV/A E3N, E27 or E94 clamps.

- 9: For J93 clamps and a single-phase, 2-wire connection.10: The energy corresponds to more than 190 years of the maximum power Pdc at unit ratios.

11: The display resolution is determined by the apparent power (S) or apparent energy (Es)

^{5:} The resolution depends on the current sensor used and on the value to be displayed.

17.2.4.3. QUANTITIES ASSOCIATED WITH POWER VALUES

Measurement	Measurement range		Display resolution	Maximum intrinsic	
Measurement	Minimum	Maximum	Display resolution	error	
Fundamental phase differences	-179°	180°	0.1°	±2°	
$\cos \phi$ (DPF, PF ₁)	-1	1	4 digits	±5 pt	
tan φ	-32.77 ⁽¹⁾	32.77 (1)	4 digits	±1° if THD < 50%	
	00/	4000/	0.400	$\pm 3 \text{ pt if u}_0 \leq 10\%$	
Voltage unbalance (u ₀)	lance (u ₀) 0% 100% 0.1%		0.1%	±10 pt if u ₀ > 10%	
Current unbalance (a₀)	0%	100%	0.1%	±10 pt	

Table 5

1: $|\tan \phi| = 32.767$ corresponds to $\phi = \pm 88.25^{\circ} + k \times 180^{\circ}$ (with k a natural integer)

17.2.4.4. HARMONICS

Massurament	Measurement range		Display reachtion	Maximum intrinsic
Measurement	Minimum	Maximum	Display resolution	error
Harmonic level of voltage (т_)	0%	1500%f	0.1% т _n < 1000 %	±(2.5% + 5 pt)
		100%r	1% T _n ≥ 1000 %	
Harmonic level of current (T _n) (except Flex®)	0%	1500%f 100%r	0.1% T _n < 1000 %	$\pm (2 \% + (n \times 0.2 \%) + 10 \text{ pt})$ n ≤ 25
(except fiex)		100 %	1% T _n ≥ 1000 %	$\pm (2 \% + (n \times 0.6 \%) + 5 \text{ pt})$ n > 25
Harmonic level of current (τ_n)	0%	1500%f	0.1% T _n < 1000 %	$ \pm(2\% + (n \times 0.3\%) + 5 \text{ pt}) n \le 25 $
(AmpFlex [®] and MiniFlex [®])		100%r	1% ⊺ _n ≥ 1000 %	±(2 % + (n × 0.6 %) + 5 pt) n > 25
Total harmonic distortion (THD) of voltage (with respect to the fundamental) of the voltage	0%	999.9%	0.1%	±(2.5% + 5 pt)
				$\pm (2.5\% + 5 \text{ pt})$ if ∀ n ≥ 1, t _n ≤ (100 ÷ n) [%]
Total harmonic distortion (THD) (with respect to the fundamental) of the	0%	999.9%	0.1%	or ±(2 % + (n _{max} × 0.2 %) + 5 pt)
current (except Flex®)				$\frac{1}{n_{max}} < \frac{1}{25} + \frac{1}$
	0%	999.9%	0.1%	$\begin{array}{c} \pm (2.5\% + 5 \text{ pt}) \\ \text{if } \forall n \ge 1, t_{n} \le (100 \div n^{2}) [\%] \end{array}$
Total harmonic distortion (THD) (with respect to the fundamental) of the cur-				or
rent (AmpFlex [®] and MiniFlex [®])				$ \pm (2 \% + (n_{max} \times 0.3 \%) + 5 \text{ pt}) n_{max} \le 25 $
				$\pm (2 \% + (n_{max} \times 0.6 \%) + 5 \text{ pt})$ $n_{max} > 25$
Total harmonic distortion (THD) of voltage (with respect to the signal without DC)	0%	100%	0.1%	±(2.5% + 5 pt)
	0%	100%	0.1%	$\pm (2.5\% + 5 \text{ pt})$ if ∀ n ≥ 1, t _n ≤ (100 ÷ n) [%]
Total harmonic distortion (THD) of the current (with respect to the signal				or $\pm (2 \% + (n_{max} \times 0.2 \%) + 5 \text{ pt})$
without DC) (except Flex®)				n _{max} ≤ 25
				$ \begin{array}{c} \pm (2 \% + (n_{max} \times 0.5 \%) + 5 \text{ pt}) \\ n_{max} > 25 \\ \pm (2.5\% + 5 \text{ pt}) \end{array} $
	al 0%			if $\forall n \ge 1$, $t_n \le (100 \div n^2)$ [%]
Total harmonic distortion (THD) of the current (with respect to the signal without DC) (AmpFlex [®] and MiniFlex [®])		100%	0.1%	or $\pm (2 \% + (n_{max} \times 0.3 \%) + 5 \text{ pt})$ $n \le 25$
				$ \begin{array}{c} n_{max} \leq 25 \\ \hline \pm (2 \% + (n_{max} \times 0.6 \%) + 5 \text{ pt}) \\ n_{max} > 25 \end{array} $
				$ \pm (5\% + (n_{max} \times 0.4\%) + 5 \text{ pt}) n_{max} \le 25 $
Harmonic loss factor (FHL)	1	99.99	0.01	$ \begin{array}{c} \xrightarrow{\text{max}} \pm (10 \% + (n_{\text{max}} \times 0.7 \%) + 5 \text{ pt}) \\ n_{\text{max}} > 25 \end{array} $
K fastar (EK)	4	00.00	0.04	$ \begin{array}{c} \pm (5 \% + (n_{max} \times 0.4 \%) + 5 \text{ pt}) \\ n_{max} \leq 25 \end{array} $
K factor (FK)	1	99.99	0.01	$ \begin{array}{c} \underbrace{\pm(10 \% + (n_{max} \times 0.7 \%) + 5 \text{ pt})}_{n_{max}} \times 25 \end{array} $
Phase differences of harmonics (order \geq 2)	-179°	180°	1°	±(1.5° + 1° x (n ÷ 12.5)

Nmax_{max} is the highest order of which the harmonic level is not zero.

Measurement		ity ratio)	Display resolution (with unity ratio)	Maximum intrinsic error	
	Minimum	Maximum			
phase-to-neutral	2 V	1000 V ⁽¹⁾	, , , , , , , , , , , , , , , , , , ,	±(2.5% + 1 V)	
			°	, , , , , , , , , , , , , , , , , , ,	
phase-to-phase	2 V	2000 V (1)	-	±(2.5% + 1 V)	
phase-to-neutral (Vd)	2 V	1000 V ⁽¹⁾	ů	±(2.5% + 1 ∨)	
			ů		
phase-to-phase (Ud)	2 V	2000 V (1)	, , , , , , , , , , , , , , , , , , ,	±(2.5% + 1 V)	
				n ≤ 25: ±(2 % + (n x 0.2%) + 1 A)	
J93 clamp	1 A	3500 A	ů	$n > 25: \pm (2\% + (n \times 0.5\%) + 1A)$	
C103 clamp			v	$n \le 25: \pm (2\% + (n \times 0.2\%) + 1A)$	
	1 A	1000 A	ů	$n > 25: \pm (2\% + (n \times 0.5\%) + 1A)$	
			v	$n \le 25: \pm (2\% + (n \times 0.3\%) + 1.4)$	
MN93 clamp	200 mA	200 A	, , , , , , , , , , , , , , , , , , ,	$n > 25: \pm (2\% + (n \times 0.5\%) + 1A)$	
			<u>_</u>		
· · ·	100 mA	100 A	4 digits	n ≤ 25: ±(2 % + (n x 0.2%) + 100 mA)	
MN93A clamp (100 A)			4 digits	n > 25: ±(2 % + (n x 0.5%) + 100 mA)	
E3N, E27 or E94	10 mA	10 A	4 digits	n ≤ 25: ±(2 % + (n x 0.2%) + 10 mA)	
clamp (100 mV/A)	10 110 1	10/1	4 digits	n > 25: ±(2 % + (n x 0.5%) + 10 mA)	
MN93A clamp (5 A)	F A		4 digits	n ≤ 25: ±(2 % + (n x 0.2%) + 10 mA)	
	5 MA	5 A	4 digits	n > 25: ±(2 % + (n x 0.5%) + 10 mA)	
			°	$n \le 25 : \pm (2 \% + (n \times 0.2\%) + 10 mA)$	
MINI94 clamp	5 mA	5 A	· · · · ·	n > 25 : ±(2 % + (n x 0.5%) + 10 mA)	
AmpFlex [®] A193	10 A	10 kA		n ≤ 25:	
MiniFlex [®] MA194 (10 kA)			4 digits	$\begin{array}{c} \pm (2 \ \% + (n \ x \ 0.3\%) + 1 \ A + (AfrMs^{(2)} \ x \ 0.1\%)) \\ n > 25: \\ \pm (2 \ \% + (n \ x \ 0.6\%) + 1 \ A + (AfrMs^{(2)} \ x \ 0.1\%)) \end{array}$	
AmpFlex [®] A193			4 digits	n ≤ 25:	
MiniFlex [®] MA194	10 A	6500 A		±(2 % + (n x 0.3%) + 1 A + (AfRMS ⁽²⁾ x 0.1%)) n > 25:	
				$\pm (2\% + (n \times 0.6\%) + 1 \text{ A} + (\text{Afr} \text{MS}^{(2)} \times 0.1\%))$	
MiniFlex [®] MA194	100 mA	100 A	-	n ≤ 25: ±(2 % + (n x 0.2%) + 30 pt)	
· · ·				n > 25: ±(2 % + (n x 0.5%) + 30 pt)	
J93 clamp	1 A	3500 A	v	±((n _{max} x 0.4%) + 1 A)	
C193 clamp	1 A	1000 A	-	±((n _{max} x 0.4%) + 1 A)	
			Ű		
· · · · · · · · · · · · · · · · · · ·	200 mA	200 A	v	±((n _{max} x 0.4%) + 1 A)	
	01A	100 A	4 digits	±((n _{max} x 0.4%) + 100 mA)	
MN93A clamp (100 A)	0.174	10071	4 digits		
E3N, E27 or E94	10 0	10.4	4 digits	1/(2 - 2 + 0.49) + 10.224	
clamp (100 mV/A)	10 mA	10 A	4 digits	±((n _{max} x 0.4%) + 10 mA)	
MN93A clamp (5 A) 5 A adapter Essailec [®] adapter	5 mA	5 A	4 digits	±((n _{max} x 0.4%) + 10 mA)	
MINI94 clamp	50 mA	200 A	4 digits	±((n _{max} x 0.4%) + 1 A)	
AmpFlex [®] A193			4 digits		
MiniFlex [®] MA194 (10 kA)	10 A	10 kA	4 digits	±((n _{max} x 0.4%) + 1 A)	
			4 digits		
MiniFlex® MA194	10 A	6500 A		±((n _{max} x 0.4%) + 1 A)	
· · · · ·					
	100 mA	100 A		±(n _{max} x 0.5%) + 30 pt)	
(100 A)			4 digits		
	phase-to-neutral (Vd) phase-to-phase (Ud) J93 clamp C193 clamp PAC93 clamp MN93 clamp E3N, E27 or E94 clamp (10 mV/A) MN93A clamp (100 A) E3N, E27 or E94 clamp (100 mV/A) MN93A clamp (100 A) E3N, E27 or E94 clamp (100 mV/A) MN93A clamp (5 A) 5 A adapter Essailec® adapter MINI94 clamp AmpFlex® A193 MiniFlex® MA194 (10 kA) AmpFlex® A193 MiniFlex® MA194 (6500 A) AmpFlex® A193 MiniFlex® MA194 (100 A) J93 clamp C193 clamp PAC93 clamp E3N, E27 or E94 clamp (10 mV/A) MN93A clamp (100 A) E3N, E27 or E94 clamp (100 mV/A) MN93A clamp (100 A) E3N, E27 or E94 clamp (100 mV/A) MN93A clamp (5 A) 5 A adapter Essailec® adapter MINI94 clamp AmpFlex® A193 MiniFlex® MA194 (10 kA) AmpFlex® A193 MiniFlex® MA194 (10 kA) AmpFlex® A193 MiniFlex® MA194 (10 kA) AmpFlex® A193 MiniFlex® MA194 (10 kA) AmpFlex® A193 MiniFlex® MA194 (500 A) AmpFlex® A193 MiniFlex® MA194 (500 A) AmpFlex® A193 MiniFlex® MA194	Phase-to-phase2 Vphase-to-neutral (Vd)2 Vphase-to-phase (Ud)2 VJ93 clamp1 AC193 clamp1 AC193 clamp1 AMN93 clamp200 mAE3N, E27 or E94 clamp (10 mV/A) MN93A clamp (100 A)100 mAE3N, E27 or E94 clamp (100 mV/A)100 mAMN93 clamp5 mAE3N, E27 or E94 clamp (100 mV/A)5 mAMN93A clamp (5 A) 5 A adapter5 mAMINI94 clamp5 mAMiniFlex® A193 MiniFlex® MA194 (10 kA)10 AAmpFlex® A193 MiniFlex® MA194 (100 A)10 mAAmpFlex® A193 MiniFlex® MA194 (100 A)100 mAJ93 clamp1 AC193 clamp PAC93 clamp1 AC193 clamp PAC93 clamp1 AMN93 clamp200 mAE3N, E27 or E94 clamp (100 mV/A) MN93A clamp (100 A)0.1 AMIN94 clamp5 mAE3N, E27 or E94 clamp (100 mV/A)0.1 AMN93 clamp5 mAE3N, E27 or E94 clamp (100 mV/A)0.1 AMIN94 clamp50 mAAmpFlex® A193 MiniFlex® MA194 (100 A)10 AMIN94 clamp50 mAAmpFlex® A193 MiniFlex® MA194 (10 KA)10 AAmpFlex® A193 MiniFlex® MA194 (10 KA)10 A<	Image: comparison of the system of	$\begin{array}{c c c c c c c c } & 4 \ digits \\ \hline 5 \ A \ adphi \\ \hline 6500 \ A \\ \hline 6 0 \ A \\ \hline 6500 \ A \\ \hline 6 0 \ A \\ \hline 7 \ A \\ $	

Table 6

- Provided that the voltages between the individual terminals and earth do not exceed 1000 VRMS.
 RMS value of the fundamental.
 n_{max} is the highest order of which the harmonic level is not zero.

17.2.4.5. CURRENT AND VOLTAGE RATIOS

Ratio	Minimum	Maximum
Voltage	<u>0</u> 1000 x √3	$\frac{9999900 \times \sqrt{3}}{0.1}$
Current (1)	1/5	60,000 / 1

Table 7

1: Only for the 5 A MN93A clamps and the 5 A adapters.

17.2.5. CHARACTERISTICS OF THE CURRENT SENSORS

The measurement error on the RMS current and the phase error must be added to the errors of the instrument in the case of measurements that use the current measurements: powers, energies, power factors, tangents, etc.

Type of sensor	RMS current at 50/60 Hz (ARMS)	Maximum error at 50/60 Hz	Maximum error on φ at 50/60 Hz
	[1 000 A 12 000 A]	±(1,2% + 1 A)	
	[100 A 1 000 A]	±(1,2% + 0,5 A)	± 0,5°
AmpFlex [®] A193	[5 A 100 A]	±(1,2% + 0,2 A)	
	[0,1 A 5 A]	±(1,2% + 0,2 A)	-
	[1 000 A 12 000 A]	±(1% + 1 A)	
	[100 A 1 000 A]	±(1% + 0,5 A)	± 0,5°
MiniFlex [®] MA194	[5 A 100 A]	±(1% + 0,2 A)	
	[0,1 A 5A]	±(1% + 0,2 A)	-
	[50 A 100 A]	±(2% + 2.5 A)	± 4°
J93 clamp	[100 A 500 A]	±(1.5% + 2.5 A)	± 2°
3,500 A	[500 A 2,000 A]	± 1%	± 1°
	[2,000 A 3,500 A]	± 1%	± 1.5°
	[1 A 50 A]	± 1%	-
C193 clamp 1,000 A	[50 A 100 A]	± 0.5%	± 1°
1,000 A	[100 A 1,200 A]	± 0.3%	± 0.7°
	[0.5 A 100 A]	±(1.5% + 1 A)	± 2.5°
PAC93 clamp	[100 A 800 A]	± 2.5%	± 2°
1,000 A	[800 A 1,000 A]	± 4%	± 2°
	[0.5 A 5 A]	±(3% + 1 A)	-
MN93 clamp	[5 A 40 A]	±(2.5% + 1 A)	± 5°
200 A	[40 A 100 A]	±(2% + 1 A)	± 3°
-	[100 A 240 A]	±(1% + 1 A)	± 2.5°
MN93A clamp	[0.2 A 5 A]	±(1% + 2 mA)	± 4°
100 A	[5 A 120 A]	± 1%	± 2.5°
MN93A clamp	[0.005 A 0.25 A]	±(1.5% + 0.1 mA)	-
5 A	[0.25 A 6 A]	± 1%	± 5°
E3N, E27 or E94 clamp (BNC)	[0.5 A 40 A]	±(4% + 50 mA)	± 1°
100 A	[40 A 70 A]	±15%	± 1°
E3N, E27 or E94 clamp (BNC) 10 A	[0.1 A 7 A] ±(3% + 50 mA)		± 1.5°
MINI94 clamp	[0.05 A 10 A]		± 1°
200 A	[10 A 200 A]	± (0.2% + 20mA)	± 0.2°
	[5 mA 50 mA[±(1% + 1.5 mA)	± 1°
Three-phase 5 A adapter	[50 mA 1 A[±(0.5% + 1 mA)	± 0°
	[1 A 5 A]	±0.5%	± 0°

Table 8

This table does not take into account possible distortion of the measured signal (THD) because of the physical limitations of the current sensor (saturation of the magnetic circuit or of the Hall effect sensor).

Limitation of the AmpFlex® and of the MiniFlex®

As is true of all Rogowski sensors, the output voltage of the AmpFlex[®] and of the MiniFlex[®] is proportional to the frequency. A high current at high frequency can saturate the current input of the instruments.

To avoid saturation, it is necessary to satisfy the following condition:

$$\sum_{n=1}^{n=\infty} [n. I_n] < I_{nom}$$

With I_{nom} being the range of the current sensor n the order of the harmonic

I, the current of the harmonic of order n

For example, the input current range of a dimmer must be one fifth of the current range selected on the instrument. Wave-train dimmers having a non-integer number of periods are not compatible with Flex[®] type sensors.

This requirement does not take into account the limitation of the pass band of the instrument, which can lead to other errors.

17.2.6. UNCERTAINTY OF THE TIME-REAL CLOCK

The uncertainty of the real-time clock is at most 80 ppm (instrument 3 years old used at an ambient temperature of 50°C).

With a new instrument used at 25°C, this uncertainty is no more than 30 ppm.

17.3. MEMORY CARD

The CA 8345 is delivered with a 16GB CD card. Depending on their capacities, SD cards can store:

	2 GB	32 GB	64 GB
Various functions	 50 screenshots 16,362 alarms 210 searches for transients and 5 searches for shock waves 1 inrush current capture, RMS+PEAK – 10 min 1 trend recording of all pa- rameters for 20 hours with a 3s sampling period 	 50 screenshots 16,362 alarms 210 searches for transients and 5 searches for shock waves 1 inrush current capture, RMS+PEAK – 10 min 1 trend recording of all pa- rameters for 6 days with a 3s sampling period 	 50 screenshots 16,362 alarms 210 searches for transients and 5 searches for shock waves 1 inrush current capture, RMS+PEAK – 10 min 1 trend recording of all pa- rameters for 40 days with a 3s sampling period
or a single trend recording of all parameters per EN 50160.	 0.4 day with a sampling period of 200 ms. 1.9 day with a sampling period of 1 s. 5.6 days with a sampling period of 3 s. 	 0.75 day with a sampling period of 200 ms. 3.75 days with a sampling period of 1 s. 11.25 days with a sampling period of 3 s. 	 3 days with a sampling period of 200 ms. 15 days with a sampling period of 1 s. 45 days with a sampling period of 3 s.

	32 GB	64 GB	
Various functions	 50 screenshots 16,362 alarms 210 searches for transients and 5 searches for shock waves 1 inrush current capture, RMS+PEAK – 10 min 1 trend recording of all parameters for 84 days with a 3s sampling period 	 50 screenshots 16,362 alarms 210 searches for transients and 5 searches for shock waves 1 inrush current capture, RMS+PEAK – 10 min 1 trend recording of all parameters for 174 days with a 3s sampling period 	
or a single trend recording of all parameters per EN 50160.	 6 days with a sampling period of 200 ms. 30 days with a sampling period of 1 s. 90 days with a sampling period of 3 s. 	 12 days with a sampling period of 200 ms. 90 days with a sampling period of 1 s. 180 days with a sampling period of 3 s. 	

The shorter the recording interval and the longer the duration of a recording, the larger the file will be.

17.4. POWER SUPPLY

17.4.1. BATTERY

The power supply unit of the instrument is a 10.9 V, 5700 mAh, Li-ion battery pack.

Voltage	10.86 V			
Nominal capacity	5700 mAh			
Minimum capacity	5500 mAh			
Loss of capacity	11% after 200 charge-discharge cycles 16% after 400 charge-discharge cycles			
The charging current and duration depend on	10°C < T < 40°C	PA40W-2: 1.5 A and 3h50 PA32ER: 1 A and 5h50		
the power supply unit (PA40W-2 or PA32ER)	0°C < T < 10°C	PA40W-2: 0.75 A and 7h30 PA32ER: 0.5 A and 11h30		
	-20°C < T < 0°C	PA40W-2: 0 A PA32ER: 0 A		
T° of use	-20 to +60°C			
Recharging T°	0 to 40°C			
Storage T°	-20 to +60 °C for one month -20 to +45°C for 3 months -20 to +20°C for one year			

If the instrument will be left unused for an extended period, remove the battery (see § 18.3).

17.4.2. EXTERNAL POWER SUPPLY:

The CA 8345 can be connected to an external supply to save or recharge the battery. It can operate while being charged.

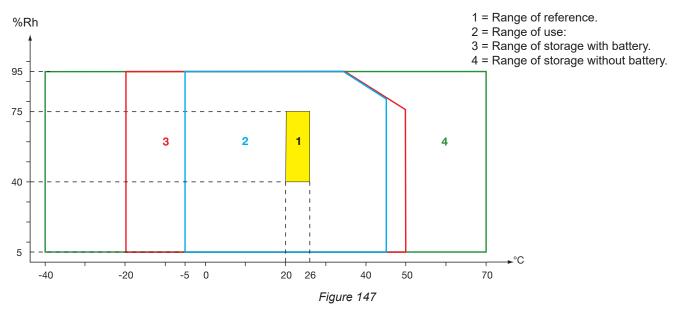
There are two chargers.

	PA 40W-2	PA32ER
Nominal voltage and overvoltage category	600 V category III	1000 V category IV
Input voltage	100 to 260 V from 0 to 440 Hz	100 to 1000 Vac 150 to 1000 VDc
Input frequency	0 to 440 Hz	DC, 40 to 70 Hz, 340 to 440 Hz
Maximum input current	0.8 A	2 A
Maximum input power	50 W	30 W
Output voltage	15 V ± 4%	15 V ± 7%
Output power	40 W max	30 W
Dimensions	160 x 80 x 57 mm	220 x 112 x 53 mm
Weight	Approximately 460 g	Approximately 930 g
Temperature of use	0 to +50°C, from 30 to 95%RH without condensation	-20 to +50°C, from 30 to 95%RH without condensation
Storage temperature	-25 to +85°C, from 10 to 90%RH without condensation	-25 to +70°C, from 10 to 90%RH without condensation

To use these power supplies, please refer to their manuals.

17.4.3. BATTERY LIFE

The typical consumption of the instrument is 750 mA. This includes the display, the SD card, GPS, the Ethernet link, wifi, and supplying the current sensors when necessary.


Battery life between charges is approximately 6 hours when the battery is fully charged and the screen is on. If the screen is off, battery life between charges is approximately 10 hours.

17.5. DISPLAY UNIT

The display unit is an active matrix LCD (TFT) having the following characteristics:

- diagonal 18 cm or 7"
- resolution 800 x 480 pixels (WVGA)
- 262,144 colours
- LED backlighting
- angle of view 85° in all directions

17.6. ENVIRONMENTAL CONDITIONS

Indoor use.

Altitude:

Use < 2,000 m Storage < 10,000 m

Degree of pollution: 3.

17.7. MECHANICAL CHARACTERISTICS

Dimensions (L x D x H)	200 mm x 285 mm x 55 mm
Mass	approximately 2 kg
Display unit	152 mm x 91 mm (diagonal 7")

Index of protection

- IP54 per IEC 60529 when the 5 elastomer caps are closed and there are no leads on the 9 terminals.
- IP20 on the measurement terminals when the instrument is in service.
- IK06 per IEC 62262, without screen.

Drop test 1 m per IEC 60068-2-31.

17.8. COMPLIANCE WITH INTERNATIONAL STANDARDS

17.8.1. ELECTRICAL SAFETY

The instrument is compliant with IEC/EN 61010-2-030 and BS EN 61010-2-030:

- Measurement inputs and enclosure: 1,000 V cat. IV, degree of pollution 3.
- Power supply input: 1,000 V cat. IV, degree of pollution 3.

The current sensors are compliant with standard IEC/EN 61010-2-032 and BS EN 61010-2-032 600 V cat. IV or 1000 V cat. III, degree of pollution 2.

The measurement leads and crocodile clips are compliant with standard IEC/EN 61010-031 and BS EN 61010-031, 1,000 V cat. IV, degree of pollution 2.

Association with current sensors:

- using the AmpFlex[®], the MiniFlex[®], and C193 clamps creates an "instrument + current sensor" assembly rated at 600 V, category IV or 1000 V, category III.
- using PAC93, J93, MN93, MN93A, MINI94, E3N, E27 and E94 clamps creates an "instrument + clamp" assembly rated at 300 V, category IV or 600 V, category III.
- using a 5 A adapter housing creates an "instrument + adapter" assembly rated at 150 V, category IV or 300 V, category III.

In order to protect the user, the instrument has protection impedances between the input terminals and the electronic circuit. As a consequence, if the user connects a USB lead to the instrument and touches the other end of the lead, the voltage and the current will not endanger them.

17.8.2. STANDARD IEC 61000-4-30, CLASS A

All of the measurement methods, the measurement uncertainties, the measurement ranges, the aggregations of measurements, the flagging, and the markings are compliant with the requirements of IEC 61000-4-30, edition 3.0, for instruments of class A.

The CA 8345 therefore performs the following measurements:

- Measurement of industrial frequency over 10 s,
- Measurement of the amplitude of the voltage for 10/12 cycles, 150/180 cycles, 10 minutes, and 2 hours,
- Calculation of the voltage unbalance for 10/12 cycles, 150/180 cycles, 10 minutes, and 2 hours,
- Measurement of the harmonics of voltages for 10/12 cycles, 150/180 cycles, 10 minutes, and 2 hours,
- Measurement of the inter-harmonics of voltages for 10/12 cycles, 150/180 cycles, 10 minutes, and 2 hours,
- Minimum and maximum values of the voltage (Under/Over deviation),
- Calculation of flicker over 10 minutes and 2 hours,
- Detection of voltage dips and interruptions, in amplitude and duration,
- Detection of temporary overvoltages at industrial frequency,
- Mains signalling voltages (MSV),
- Rapid voltage changes (RVC),
- Measurement of the amplitude of the current for 10/12 cycles, 150/180 cycles, 10 minutes, and 2 hours,
- Calculation of the current unbalance for 10/12 cycles, 150/180 cycles, 10 minutes, and 2 hours,
- Measurement of the harmonics of currents for 10/12 cycles, 150/180 cycles, 10 minutes, and 2 hours,
- Measurement of the inter-harmonics of currents for 10/12 cycles, 150/180 cycles, 10 minutes, and 2 hours,

All measurements are made for 10/12 cycles and synchronised with UTC time every 10 minutes. They are then aggregated to 150/180 cycles, 10 minutes, and 2 hours.

17.8.3. MEASUREMENT UNCERTAINTIES AND RANGES

50 Hz network			of influence
	42.5 to 57.5 Hz	± 10 mHz	U _{din} ∈[100 V; 400 V] (V) U _{din} ∈[200 V; 1000 V] (U)
60 Hz network	51 to 69 Hz	± 10 mmz	
Amplitude of the supply voltage		\pm 0.1 % U _{din}	$\begin{array}{c} U_{\text{din}} \in & [100 \text{ V}; 400 \text{ V}] \text{ (V)} \\ U_{\text{din}} \in & [200 \text{ V}; 1000 \text{ V}] \text{ (U)} \end{array}$
P _{inst,max}	0.2 to 12	± 8%	U _{din} ∈[100 V; 400 V] (V)
P _{st} , P _{lt}	0.2 to 12	Max (± 5%; 0.05)	U _{din} ∈[200 V; 1000 V] (U)
Amplitude	[10%; 90 %] U _{din}	\pm 0.2 % U _{din}	
Beginning	-	½ cycle	U _{din} ∈[100 V; 400 V] (V) U _{din} ∈[200 V; 1000 V] (U)
Duration	≥ ½ cycle x 1 cycle	1 cycle	
Amplitude	[110%; 200 %] U _{din}	± 0.2 % U _{din}	
Beginning	-	1⁄2 cycle	U _{din} ∈[100 V; 400 V] (V) U _{din} ∈[200 V; 1000 V] (U)
Duration	≥ ½ cycle	1 cycle	$\bigcup_{din} \in [200 \text{ v}, 1000 \text{ v}](0)$
Beginning	-	½ cycle	U _{din} ∈[100 V; 400 V] (V)
Duration	≥ ½ cycle x 1 cycle	1 cycle	U _{din} ∈[200 V; 1000 V] (Ú)
	0.5 to 5% (absolute)	± 0.15% (absolute)	$\begin{array}{c} U_{din} \in & [100 \text{ V}; 400 \text{ V}] \text{ (V)} \\ U_{din} \in & [200 \text{ V}; 1000 \text{ V}] \text{ (U)} \end{array}$
L 10 501	$[0.1\%; 16\%] \text{ of } V_1/U_1$ and $V_{sol}/U_{sol} \ge 1\% U_{din}$	± 5%	U _{din} ∈[100 V; 400 V] (V)
h∈[0 ; 50]	[0.1%; 16%] of V ₁ /U ₁	± 0,05 % U _{din}	U _{din} ∈[200 V; 1000 V] (Ú)
	[0.1% ; 10%] of V ₁ /U ₁	± 5%	U _{4'≖} ∈[100 V; 400 V] (V
n∈[0 ; 49]	[0.1% ; 10%] of V ₁ /U ₁	\pm 0.05 % U _{din}	U _{din} ∈[100 V; 400 V] (V) U _{din} ∈[200 V; 1000 V] (U)
	[3% ; 15%] U _{din} [0 Hz; 3 kHz]	± 5%	U _{din} ∈[100 V; 400 V] (V)
	[1% ; 3%] U _{din} [0 Hz; 3 kHz]	± 0.15 % U _{din}	U _{din} ∈[200 V; 1000 V] (Ú)
Beginning	-	1/2 cycle	
Duration	-	1 cycle	U _{din} ∈[100 V; 400 V] (V)
ΔU _{max}	[1% ; 6%] U _{din}	± 0.2 % U _{din}	U _{din} ∈[200 V; 1000 V] (Ú)
			1
Amplitude of current		± 1%	See Table 2
	_{sch} ≥ 3% _{nom}	± 5%	<u>.</u>
h∈[0 ; 50]		± 0.15 % I	nom
		± 5%	
h∈[0 ; 49]			nom
Current unbalance		± 0.15% (absolute)	I nom
	AmplitudeBeginningDurationAmplitudeBeginningDurationBeginningDuration $h \in [0; 50]$ $h \in [0; 49]$ Beginning	P _{st} , P _{it} 0.2 to 12 Amplitude [10%; 90 %] U _{din} Beginning - Duration ≥ ½ cycle x 1 cycle Amplitude [110%; 200 %] U _{din} Beginning - Duration ≥ ½ cycle x 1 cycle Beginning - Duration ≥ ½ cycle x 1 cycle Beginning - Duration ≥ ½ cycle x 1 cycle Beginning - Duration ≥ ½ cycle x 1 cycle Beginning - Duration ≥ ½ cycle x 1 cycle h∈[0; 50] [0.1%; 16%] of V ₁ /U ₁ and V _{sah} /U _{sah} ≥ 1% U _{din} [0.1%; 16%] of V_1/U ₁ and V _{isah} /U _{isah} < 1% U _{din} [0.1%; 10%] of V_1/U ₁ and V _{isah} /U _{isah} < 1% U _{din} [0.1%; 10%] of V_1/U ₁ and V _{isah} /U _{isah} < 1% U _{din} [0.1%; 3%] U _{din} [0 Hz; 3 kHz] Beginning - Duration - ΔU _{max} [1%; 6%] U _{din} ΔU _{max} [1%; 6%] U _{din} [1%; 6%] U _{din}	$\begin{array}{ c c c c c } \hline P_{inst_{max}} & 0.2 \text{ to } 12 & \pm 8\% \\ \hline P_{at}, P_{it} & 0.2 \text{ to } 12 & Max (\pm 5\%; 0.05) \\ \hline \text{Amplitude} & [10\%; 90\%] U_{din} & \pm 0.2\% U_{din} \\ \hline \text{Beginning} & - & ½ cycle \\ \hline \text{Duration} & \geq ½ cycle x 1 cycle & 1 cycle \\ \hline \text{Amplitude} & [110\%; 200\%] U_{din} & \pm 0.2\% U_{din} \\ \hline \text{Beginning} & - & ½ cycle \\ \hline \text{Duration} & \geq ½ cycle x 1 cycle & 1 cycle \\ \hline \text{Duration} & \geq ½ cycle x 1 cycle & 1 cycle \\ \hline \text{Beginning} & - & ½ cycle \\ \hline \text{Duration} & \geq ½ cycle x 1 cycle & 1 cycle \\ \hline \text{Duration} & \geq ½ cycle x 1 cycle & 1 cycle \\ \hline \text{Duration} & \geq ½ cycle x 1 cycle & 1 cycle \\ \hline \text{Duration} & \geq ½ cycle x 1 cycle & 1 cycle \\ \hline \text{Duration} & \geq ½ cycle x 1 cycle & 1 cycle \\ \hline \text{Duration} & \geq 1\% cycle x 1 cycle & 1 cycle \\ \hline \text{Duration} & \geq 1\% cycle x 1 cycle & 1 cycle \\ \hline 10.1\%; 16\%] of V_{i}/U_{i} & \pm 0.15\% & (absolute) \\ \hline [0.1\%; 10\%] of V_{i}/U_{i} & \pm 5\% & 10(1\%; 16\%) of V_{i}/U_{i} & and V_{saf}/U_{saf} \geq 1\% U_{din} & \pm 0.05\% U_{din} \\ \hline h \in [0; 49] & \begin{bmatrix} [0.1\%; 10\%] of V_{i}/U_{i} & and V_{saf}/U_{saf} \geq 1\% U_{din} & \pm 0.05\% U_{din} \\ \hline [0.1\%; 10\%] of V_{i}/U_{i} & and V_{saf}/U_{saf} \geq 1\% U_{din} & \pm 0.05\% U_{din} \\ \hline [0.1\%; 10\%] of V_{i}/U_{i} & and V_{saf}/U_{saf} \leq 1\% U_{din} & \pm 0.15\% U_{din} \\ \hline [0.1\%; 10\%] of V_{i}/U_{i} & and V_{saf}/U_{saf} \geq 1\% U_{din} & \pm 0.15\% U_{din} \\ \hline Beginning & - & & & & & & & & & & \\ \hline [0.1\%; 10\%] of V_{i}/U_{i} & & & & & & & & & & & & & & & & & & &$

Table 9

17.8.4. MARKINGS PER IEC 62586-1

- The marking PQI-A-PI means: PQI-A: class A power quality instrument
- P: portable measuring instrument
- I: Indoor use

17.9. ELECTROMAGNETIC COMPATIBILITY (EMC)

The instrument is in compliance with the requirements of standard IEC/ EN 61326-1 or BS EN 61326-1.

- The instrument is intended for use in an industrial environment.
- The instrument is a class A product.
- This instrument is not intended for use in residential environments and may not ensure adequate protection of radio reception in this type of environment.

For AmpFlex® and MiniFlex® sensors:

- An (absolute) influence of 2% may be observed on the current THD measurement in the presence of a radiated electric field.
- An influence of 0.5 A may be observed on the RMS current measurement in the presence of conducted radio frequencies.
- An influence of 1 A may be observed on the RMS current measurement in the presence of a magnetic field.

17.10. RADIO EMISSIONS

The instruments are in compliance with directive RED 2014/53/EU and with FCC regulations.

The wifi module is certified in compliance with the FCC regulations under number XF6-RS9113SB.

17.11. GPL CODE

The source codes of the software under GNU GPL (General Public License) are available www.chauvin-arnoux.com/COM/CA/doc/Q2/Software_CA83XX.zip

18. MAINTENANCE

Except for the batteries, the instrument contains no parts that can be replaced by personnel who have not been specially trained and accredited. Any unapproved work or replacement of any part by equivalents may gravely compromise safety.

The servicing and maintenance instructions must be provided to the responsible authority.

18.1. CLEANING THE HOUSING

Disconnect anything connected to the instrument and switch it off.

Use a soft cloth, moistened with soapy water. Rinse with a damp cloth and dry rapidly with a dry cloth or forced air. Do not use alcohol, solvents, or hydrocarbons.

18.2. MAINTENANCE OF THE SENSORS

The current sensors must be regularly maintained:

- Use a soft cloth, moistened with soapy water. Rinse with a damp cloth and dry rapidly with a dry cloth or forced air. Do not use alcohol, solvents, or hydrocarbons.
- Keep the air gaps of the clamps perfectly clean. Lightly oil visible metal parts to prevent rust.

18.3. REPLACEMENT OF THE BATTERY

The battery of this instrument is specific: it has precisely adapted protective and safety elements. Replacing the battery by a model other than the one specified may cause material damage or bodily injury by explosion or fire.

To ensure unbroken safety, replace the battery only by the original model. Do not use a battery of which the housing is damaged.

Do not throw the battery into a fire.

Do not expose the battery to a temperature in excess of 100°C.

Do not short-circuit the terminals of the battery pack.

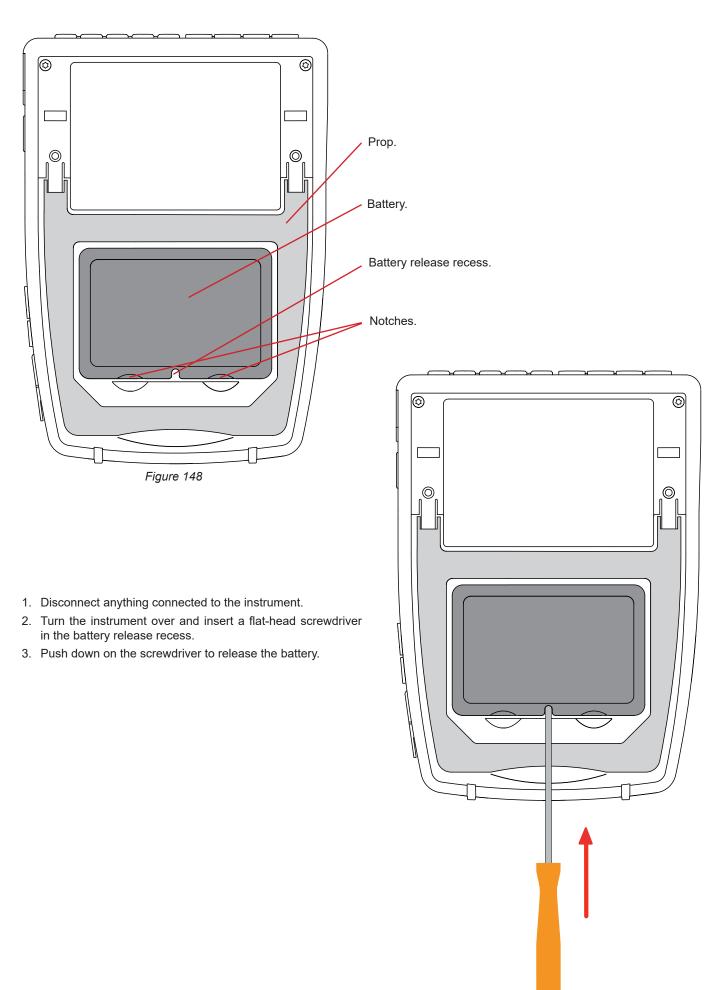


Figure 149

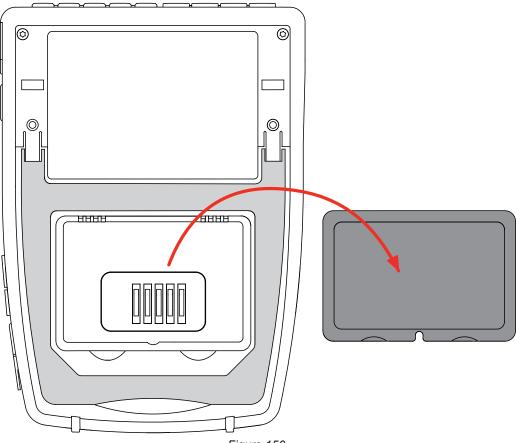


Figure 150

4. Use the notches to extract the battery from its compartment.

Old batteries must not be treated as household wastes. Take them to the appropriate collection point for recycling.

In the absence of a battery, the internal clock of the instrument continues to operate for at least 17 hours.

5. Place the new battery in its compartment and press down until you hear the click of the locking mechanism.

Whenever the battery has been disconnected, even if it has not been replaced, it must be fully recharged. This is so that the instrument will know the charge status of the battery (this information is lost when it is disconnected).

18.4. MEMORY CARD

Unprotected memory card

E

i

The instrument accepts type SD (SDSC), SDHC, and SDXC memory cards.

To remove an SD card from the instrument, refer to § 3.3.4.

Write-protect the memory card when you remove it from the instrument. Remove the write protection before putting the card back in its slot in the instrument.

Protected memory card

105

To remove the memory card from its slot, open the elastomer cap. Eject the card as described in § 3.3.4 (O, O, H, D). Press on the memory card to remove it from its slot.

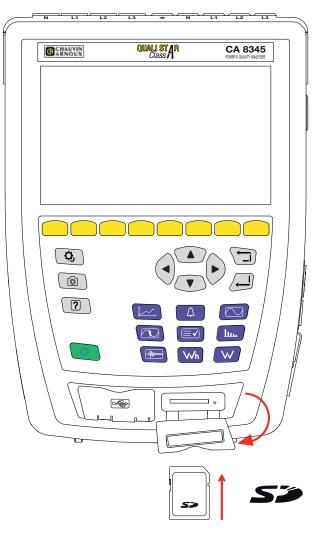
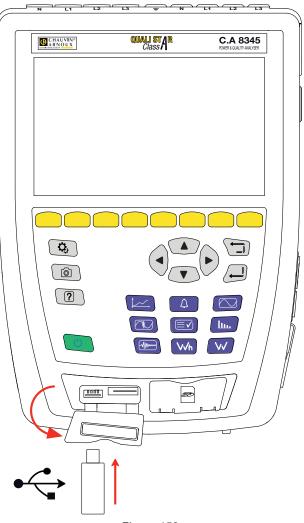


Figure 151

To put the card back in place, slip it into its slot until it is all the way home. The red indicator lights. Then put the elastomer cap back in place.

18.5. UPDATING THE FIRMWARE

With a view to providing the best possible service in terms of performance and technical upgrades, Chauvin Arnoux enables you to update the software incorporated in this instrument by a free download of the new version, available on our web site.


Our site:

www.chauvin-arnoux.com

In the «Support» item, click on "Download our software" and enter the name of the instrument, "CA 8345".

You can perform the update in several ways:

- Connect the instrument to your PC to an Ethernet network having access to Internet using an Ethernet cord.
- Copy the update file to a USB drive, then insert the drive in its port in the instrument.
- Copy the update file to the SD card and insert the card in its slot in the instrument.

To install the update, refer to § 3.3.6.

i

The update of the firmware depends on its compatibility with the hardware version of the instrument. This version is indicated in the instrument configuration; see § 3.3.7.

Updating the firmware erases all of the data: configuration, alarm campaigns, screenshots, inrush current captures, searches for transients, trend recordings. Save the data you want to keep to a PC using the PAT3 software before updating the firmware.

Except as otherwise stated, our warranty is valid for 36 months starting from the date on which the equipment was sold. The extract from our General Conditions of Sale is available on our website. <u>www.group.chauvin-arnoux.com/en/general-terms-of-sale</u>

The warranty does not apply in the following cases:

- inappropriate use of the equipment or use with incompatible equipment;
- modifications made to the equipment without the explicit permission of the manufacturer's technical staff
- work done on the device by a person not approved by the manufacturer;
- adaptation to a particular application not anticipated in the definition of the equipment or by the user manual
- damage caused by shocks, falls, or floods.

20. APPENDICES

This section presents the formulas used for the calculation of the different parameters.

The formulas are compliant with standard IEC 61000-4-30, edition 3.0, for class A instruments and with IEEE 1459, 2010 edition, for the power formulas.

20.1. NOTATION

Notation	Description	
Y	Represents V, U or I.	
L	Number of the phase or of the channel.	
n	Instantaneous sample index.	
h	Subgroup order of the harmonic or of the interharmonic.	
М	Total number of samples in the duration considered.	
N	Number of cycles.	
Y _L (n)	Instantaneous value of the channel L sample having index n.	
Y _{sghL} (h)	RMS value of the sub-group harmonic of order h on channel L, Voltage/Current. = square root of the sum of the squares of the RMS values of a harmonic and of the two spectral components directly adjacent to it.	
Y _{sghL} (h)	RMS value of the centred interharmonic subgroup of order h on channel L, Voltage/Current. = RMS value of all spectral components between two consecutive harmonic frequencies, not including the spectral components directly adjacent to the harmonic frequencies.	
l _{hL} (h)	RMS current of the harmonic of order h on channel L.	

Most of the quantities measured can be calculated on aggregations of different durations:

- 1 cycle (= 1 period = 1/frequency),
- 10/12 cycles (10 cycles for 50 Hz, 12 cycles for 60 Hz),
- 150/180 cycles (150 cycles for 50 Hz, 180 cycles for 60 Hz),
- 10 minutes,
- other.

20.2. FORMULAS

20.2.1. RMS VALUES

The quantities are calculated in accordance with standard IEC 61000-4-30, edition 3.0, § 5.2.1. The RMS value includes the DC component.

$$Y_{RMSL} = \sqrt{\frac{\sum_{n=1}^{M} Y_L^2(n)}{M}}$$

20.2.2. PEAK VALUES

$$Y_{pk+L} = \max_{M}(Y_L(n))$$
$$Y_{pk-L} = \min_{M}(Y_L(n))$$

20.2.3. CREST FACTOR

$$\begin{split} Y_{CFL} &= \frac{Y_{pkL}}{Y_{RMSL}}\\ \text{With } Y_{pkL} &= \max(|Y_{pk+L}|,|Y_{pk-L}|) \end{split}$$

20.2.4. LEVELS OF HARMONICS AND INTERHARMONICS

The quantities are calculated in accordance with standard IEC 61000-4-7, edition 2.0 A1, § 5.6.

Level of harmonics referred to the RMS value of the fundamental (%f):

$$Y_{h\% fL}(h) = \frac{Y_{sghL}(h)}{Y_{sghL}(1)}$$

Level of harmonics referred to the RMS value without DC (%r):

$$Y_{h\%rL}(h) = \frac{Y_{sghL}(h)}{Y_{Lrms}}$$

Level of interharmonics referred to the RMS value of the fundamental (%f):

$$Y_{ih\%fL}(h) = \frac{Y_{isghL}(h)}{Y_{sgL}(1)}$$

Level of interharmonics referred to the RMS value without DC (%r):

$$Y_{ih\%rL}(h) = \frac{Y_{isghL}(h)}{Y_{Lrms}}$$

20.2.5. LEVEL OF UNBALANCES

The quantities are calculated in accordance with standard IEC 61000-4-30, edition 3.0, § 5.7.1.

The unbalance of the supply voltage is evaluated by the method of symmetrical components. In addition to direct component U1, an unbalance adds at least one of the following components: inverse component U2 and/or zero sequence component U0.

Inverse voltage component:

$$u_2 = \frac{U_2}{U_1} x 100\%$$

Zero sequence voltage component:

$$u_0 = \frac{U_0}{U_1} x 100\%$$

Inverse current component: $a_2 = \frac{I_2}{I_1} x 100\%$

Zero sequence current component:

$$a_0 = \frac{I_0}{I_1} x 100\%$$

With

U₀, I₀: tomopolar voltage or current.

 U_1 , I_1 : forward voltage or current.

 U_2 , I_2 : inverse voltage or current.

20.2.6. MAINS SIGNALLING VOLTAGES (MSV)

The quantities are calculated in accordance with standard IEC 61000-4-30, edition 3.0, § 5.10.

The voltage amplitude of the signal for a specified carrier frequency is obtained by calculating the square root of the sum of the squares of the RMS values, for 10/12 periods, of the four closest interharmonic spikes.

20.2.7. LEVEL OF HARMONIC GROUP DISTORTION

The quantities are calculated in accordance with standard IEC 61000-4-7 A1, edition 2.0, § 3.3.2.

$$THDG_L\%f = \sqrt{\frac{\sum_{h=2}^{63} Y_{sghL}(h)^2}{Y_{sghL}(1)^2}}$$
$$THDG_L\%r = \sqrt{\frac{\sum_{h=2}^{63} Y_{sghL}(h)^2}{(Y_{sghL}(1)^2 + \sum_{n=2}^{63} Y_{sghL}(h)^2)}}$$

20.2.8. DISTORTION

$$Y_{dL} = \sqrt{\sum_{h=2}^{63} Y_{sghL}(h)^2}$$

20.2.9. K FACTOR AND HARMONIC LOSS FACTOR

These quantities concern only the current and are calculated in accordance with standard IEEE C57.110, 2004 edition, § B.1 and § B.2.

The K-factor (KF) is a nominal value applied to a transformer to indicate its ability to be used with loads that consume non-sinusoidal currents:

$$KF_L = \sum_{h=1}^{h_{max}} \frac{I_{HL}^2(h)}{I_R^2} x h^2$$

With I_{R} : nominal current of the transformer

Harmonic loss factor (HLF):

$$FHL_{L} = \frac{\sum_{h=1}^{h_{max}} h^{2} \times I_{HL}^{2}(h)}{\sum_{h=1}^{h_{max}} I_{HL}^{2}(h)}$$

K factor (FK) Derating of the transformer as a function of the harmonics:

$$FK_{L} = \sqrt{1 + \frac{e}{1 + e} \left(\frac{\sum_{h=2}^{h_{max}} h^{q} \times I_{HL}^{2}(h)}{\sum_{h=1}^{h_{max}} I_{HL}^{2}(h)}\right)}$$

With: $e \in [0.05; 0.1]$ and $q \in [1.5; 1.7]$

20.2.10. INDUSTRIAL FREQUENCY

Quantity calculated in accordance with standard IEC 61000-4-30, edition 3.0, § 5.1.1.

The zero crossings method is used. The duration of the aggregation depends on the configuration of the instrument (10 seconds in Class A mode).

20.2.11. DC COMPONENT

Mean of the M samples Y_{L} . $Y_{DCL} = \frac{\sum_{n=0}^{M-1} Y_{L}(n)}{M}$

20.2.12. ACTIVE POWER (P)

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.3.

Active power, per phase: $\sum_{n=0}^{M-1} V_L(n) \cdot I_L(n)$

$$P_L = \frac{\sum_{n=0}^{\infty} V_L(n) \cdot I_L(n)}{M}$$

With $V_{I}(n)$ and $I_{I}(n)$ = instantaneous values of the V or I sample having index n in channel L.

Total active power:

$$P_{\Sigma} = P_1 + P_2 + P_3$$

20.2.13. FUNDAMENTAL ACTIVE POWER (P_F)

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.4.

Active power of fundamental, per phase:

 $P_{fL} = \frac{\sum_{n=0}^{M-1} V_{fL}(n) . I_{fL}(n)}{M}$

With $V_{_{H}}(n)$ and $I_{_{H}}(n)$ = instantaneous fundamental voltage and current of the sample having index n in channel L.

Total active power of fundamental:

 $P_{f\Sigma} = P_{fL1} + P_{fL2} + P_{fL3}$

Notes: these quantities, which are used to calculate other quantities, are not displayed.

20.2.14. FUNDAMENTAL REACTIVE POWER (Q_F)

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.6.

Fundamental reactive power, per phase: $Q_{fL} = V_{fL} x I_{fL} x \sin (\varphi_{V_{fL}I_{fL}})$ with $\varphi_{v_{fL}I_{fL}}$ = angle between V_{fl} and I_{fl} , V and I of the fundamental in channel L.

Total fundamental reactive power $Q_f = Q_{fL1} + Q_{fL2} + Q_{fL3}$

20.2.15. HARMONIC ACTIVE POWER (P_H)

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.5.

The harmonic active power includes the DC component.

Harmonic active power, per phase: $P_{HL} = P_L - P_{fL}$

Total harmonic active power: $P_{H\Sigma} = P_{HL1} + P_{HL2} + P_{HL3}$

20.2.16. DC POWER (P_{DC})

DC power, per phase: $P_{DCL} = V_{DCL} \ x \ I_{DCL}$ With V_{DCL} and _{IDCL}: DC voltage and current in channel L.

Total DC power: $P_{DC\Sigma} = P_{DCL1} + P_{DCL2} + P_{DCL3}$

20.2.17. APPARENT POWER (S)

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.7.

Apparent power, per phase: $S_L = V_L \ x \ I_L$ With V₁ and I₁: RMS voltage and current of channel L.

Total apparent power: $S_{\Sigma} = S_{L1} + S_{L2} + S_{L3}$

20.2.18. NON-ACTIVE POWER (N)

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.14.

Non-active power, per phase:

$$N_L = \sqrt{S_L^2 - P_L^2}$$

Total non-active power:

$$N_{\Sigma} = \sqrt{S_{\Sigma}^2 - P_{\Sigma}^2}$$

20.2.19. DISTORTING POWER (D)

Distorting power, per phase:

$$D_L = \sqrt{S_L^2 - P_L^2 - Q_{fL}^2} = \sqrt{N_L^2 - Q_{fL}^2}$$

Total distorting power:

$$D_{\Sigma} = \sqrt{S_{\Sigma}^2 - P_{\Sigma}^2 - Q_f^2} = \sqrt{N_{\Sigma}^2 - Q_f^2}$$

20.2.20. POWER FACTOR (PF), POWER FACTOR OF FUNDAMENTAL (PF1)

Quantities calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.16 and § 3.1.2.15.

Power factor (PF), per phase:

$$PF_L = \frac{P_L}{S_L}$$

$$PF_{\Sigma} = \frac{F_{\Sigma}}{s_{\Sigma}}$$

Displacement Factor (DPF) or $\cos \varphi$ or Fundamental power factor (PF1), per phase: $DPF_L = PF_{1L} = cos(\varphi)_L = \frac{P_{fL}}{s_{fL}}$

Total Displacement Factor (DPF) or $\cos \varphi$ or Fundamental power factor (PF1): $DPF_{\Sigma} = PF_{1\Sigma} = \frac{P_{f\Sigma}}{s_{r\Sigma}}$

20.2.21. TANGENT

Tangent of the difference between the angle of the fundamental voltage and the angle of the fundamental current.

Tangent, per phase: $\tan(\varphi)_L = \frac{Q_{fL}}{P_{fL}}$

Total tangent: $\tan(\varphi)_{\Sigma} = \frac{Q_{f\Sigma}}{P_{f\Sigma}}$

20.3. FLICKER

The quantities are calculated in accordance with class F3 of standard IEC 61000-4-15, edition 2.0, § 4.7.3, § 4.7.4, and § 4.7.5.

Flicker measures the human perception of the effects of fluctuations in the amplitude of the voltage supplying a lamp.

These variations are caused mainly by fluctuations of the reactive power in the network, themselves caused by the connection and disconnection of devices.

To accurately reflect the effects on vision, the measurement must be made over a long enough time (10 minutes or 2 hours). That said, flicker can vary considerably in a short time, since it depends on connections and disconnections to the network.

The CA 8345 therefore measures:

- instantaneous flicker Pinst, The value displayed is max(Pinst) on a 150/180-cycle aggregation. The max(Pinst) recorded in Trend mode is calculated on the selected aggregation.
- short-term flicker P_{st},

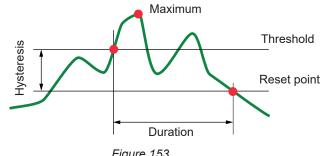
This is calculated over 10 minutes. This interval is long enough to minimise the transient effects of connections and disconnections, but also long enough to take into account the deterioration of a user's vision.

long-term flicker P_{..}.

This is calculated over 2 hours. It is used to take into account devices having a long cycle. For P_u, the instrument lets you choose the calculation method (see § 3.4.1): fixed or moving window. Long-term flicker based on a 2-hour observation period.

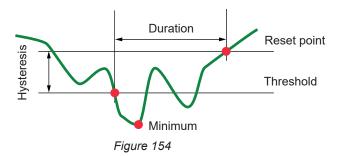
The perceived discomfort is a function of the square of the amplitude of the fluctuation multiplied by the duration of the fluctuation. The average observer's sensitivity to lighting fluctuations is greatest around 10 Hz.

20.4. SOURCES OF DISTRIBUTION SUPPORTED BY THE INSTRUMENT


See the connections § 4.4.

20.5. HYSTERESIS

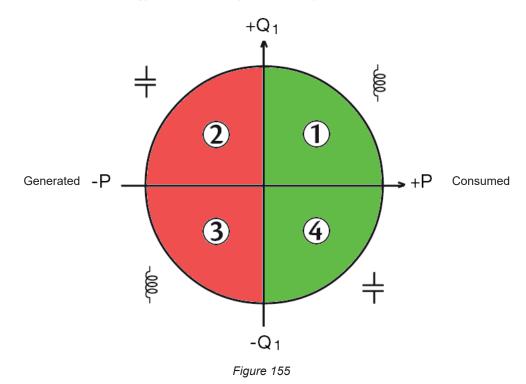
Hysteresis is a filtering principle used in alarm mode (see § 12) and in inrush current mode (see § 11). Careful adjustment of the hysteresis avoids a repeated change of state when the measurement oscillates around the threshold.


20.5.1. OVERVOLTAGE DETECTION

At a hysteresis of 2% for example, the reset point for an overvoltage detection will be (100% - 2%), or 98 % of the threshold voltage.

20.5.2. DETECTION OF DIP OR OF INTERRUPTION

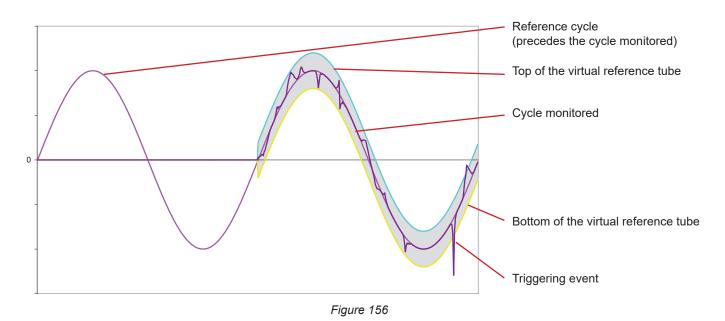
For a hysteresis of 2% for example, the reset point in the context of dip detection will be (100% + 2%), or 102% of the threshold voltage.


20.6. MINIMUM SCALE VALUES OF WAVEFORMS AND MINIMUM RMS VALUES

	Minimum scale value (waveform mode)	Minimum RMS values
Phase-to-earth and phase-to-phase voltages	8 V	2 V
AmpFlex [®] A193, MiniFlex [®] MA194 (10 kA)	80 A	10 A
AmpFlex [®] A193, MiniFlex [®] MA194 (1 kA)	8 A	1 A
AmpFlex [®] A193, MiniFlex [®] MA194 (100 A)	800 mA	100 mA
J93 clamp	24 A	3 A
C193 clamp	8 A	1 A
PAC93 clamp	8 A	1 A
MN93 clamp	2 A	200 mA
MN93A clamp (100 A)	800 mA	100 mA
E3N or E27 clamp (10 mV/A)	800 mA	100 mA
E3N or E27 clamp (100 mV/A)	80 mA	10 mA
MN93A clamp (5 A)	40 mA	5 mA
MINI94 clamp	80 mA	2 mA
5 A and Essailec [®] adapters	40 mA	5 mA

Value to be multiplied by the ratio in effect (if not unity). Scale value = (dynamic full scale) / 2 = (Max - Min) / 2

20.7. FOUR-QUADRANT DIAGRAM


This diagram is used for power and energy measurements (see § 7 and 8).

20.8. TRANSIENT CAPTURE TRIGGERING MECHANISM

When a search for transients is started, each sample is compared to the sample from the previous cycle. In standard IEC 61000-4-30, this monitoring method is called the "moving window method". The previous cycle corresponds to the middle of a virtual tube; it is used as reference. When a sample deviates from the tube, it is considered a triggering event; the representation of the transient is then captured by the instrument. The cycle that precedes the event and the three cycles that follow it are stored in memory.

Here is a graphic representation of the transient capture triggering mechanism :

The half-width of the virtual tube, for voltage or current, is equal to the threshold programmed in the configuration of the transient mode (see § 3.4.5).

20.9. CONDITIONS OF CAPTURE IN INRUSH CURRENT MODE

The capture is determined by a triggering event and a stop event. A capture stops automatically in one of the following cases:

- the stop event occurs,
- the recording memory is full,
 the recording duration exceeds 10 minutes in RMS+WAVE mode,
- the recording duration exceeds 10 minutes in RMS mode.

The capture stop threshold is calculated by the following formula: [Stop threshold [A]] = [Triggering threshold [A]] x (100 - [stop hysteresis [%]]) ÷ 100

Here are the triggering and stop conditions of captures:

Triggering filter	Triggering and stop conditions	
A1	Triggering condition <=> [half-cycle RMS value of A1] > [Triggering threshold] Stop condition <=> [half-cycle RMS value of A1] < [Stop; threshold]	
A2	Triggering condition <=> [half-cycle RMS value of A2] > [Triggering threshold] Stop condition <=> [half-cycle RMS value of A2] < [Stop; threshold]	
A3	Triggering condition <=> [half-cycle RMS value of A3] > [Triggering threshold] Stop condition <=> [half-cycle RMS value of A3] < [Stop; threshold]	
3 A	Triggering condition <=> [the half-cycle RMS value in one of the current] channels > [Triggering threshold] Stop condition <=> [the half-cycle RMS value in all of the current channels] < [Stop threshold]	

20.10. GLOSSARY

20.10. 61	LUSSART		
\simeq	AC and DC components.		
~	AC component only.		
_	DC component only.		
٤	Inductive phase shift.		
÷	Capacitive phase shift.		
0	Degree.		
+	Expert mode.		
1.1	Absolute values.		
φ _{νΑ}	Phase difference of the phase-to-earth voltage (phase voltage) with respect to the phase-to-earth current (line cur- rent).		
$\boldsymbol{\phi}_{UA}$	Phase difference of the phase-to-phase voltage (line voltage) with respect to the phase-to-earth current (line current). Two-phase 2-wire mode only.		
Σ	System value.		
%	Percentage.		
%F	Value of fundamental as reference (percentage of the fundamental value).		
%R	Total value as reference (percentage of the total value).		
Α	Phase-to-earth current (line current) or ampere as unit.		
A0,	Level of current unbalance.		
A2,	Level of inverse current unbalance.		
A1	Current of phase 1.		
A2	Current of phase 2.		
A3	Current of phase 3.		
A-h	Current harmonic.		
AC	AC component (current or voltage).		
Acf	Crest factor of the current.		
Ad	Distorting RMS current.		
Арс	DC current.		
A _{nom}	Nominal current of the current sensors.		
Арк+	Maximum peak current.		
Арк-	Minimum peak current.		
ARMS	RMS current.		
Атно	Total harmonic distortion of the current.		
ATHDF	Harmonic distortion of the current referred to the RMS value of the fundamental.		
ATHDR	Harmonic distortion of the current referred to the total RMS value without DC.		
AVG	Average value (arithmetic mean).		
Pass band:	frequency range within which the response of an instrument is greater than some minimum.		
BTU	British Thermal Unit.		
CF	Crest Factor for current or voltage: ratio of peak current to RMS current.		
fundamenta	fundamental component : component of which the frequency is the fundamental frequency.		
cos φ	Cosine of the phase difference of the voltage with respect to the current (displacement factor – DPF).		
-	reduction of the voltage at a point in the electrical network to below the interruption threshold.		
Voltage dip:	temporary lowering of the amplitude of the voltage at a point in the electrical network to below some specified threshold.		
D	Distorting power.		
DC	DC component (current or voltage).		
Voltage bala	ance in a polyphase electrical network: state in which the RMS values of the voltages between conductors (funda- mental component), and/or the phase differences between successive conductors, are not all equal.		
DPF	Displacement factor (cos φ).		
DHCP	Dynamic Host Configuration Protocol.		
Е	Exa (10 ¹⁸)		
E _D	Distorting energy.		
E _{PDC}	DC energy.		
Eqf _{qf}	Reactive energy.		

E _P	Active energy.		
E _N	Non-active energy.		
Es	Apparent energy.		
FK	K factor calculated per IEEE C57.110. Downgrading of the transformer as a function of harmonics		
FHL	Harmonic loss factor (FHL) This is used to quantify losses due to harmonics in transformers.		
Flicker	visual effect produced by voltage variations.		
Frequency	number of complete voltage or current cycles produced in one second.		
G	Giga (10 ⁹)		
GPS	Satellite-based (Global Positioning System).		
Harmonics	Voltages or currents found in electrical installations at frequencies that are integral multiples of the fundamental frequency.		
Hysteresis	difference of amplitude between the forward and reset points of thresholds.		
Hz	unit in which network frequency is stated.		
J	Joule		
k	kilo (10 ³)		
KF	K factor calculated per IEEE C57.110. Indicates the ability of a transformer to be used with loads that consume non-sinusoidal currents.		
L	Channel (Line).		
m	milli (10 ⁻³)		
М	Mega (10 ⁶)		
MAX	Maximum value, calculated over 10 or 12 cycles depending on whether the frequency is 50 or 60 Hz.		
MIN	Minimum value, calculated over 10 or 12 cycles depending on whether the frequency is 50 or 60 Hz.		
Ms	millisecond.		
MSV	Mains Signalling Voltage.		
Ν	Non-active power.		
NTP	Network Time Protocol, enables time synchronisation via a time server		
Р	Active power.		
Р	Peta (10 ¹⁵)		
Рос	DC power.		
PF	Power Factor: ratio of active power to apparent power.		
PF₁	Fundamental power factor.		
Phase	Time relation between current and voltage in AC circuits.		
PK	or PEAK. Maximum (+) or minimum (-) peak value of the signal over 10/12 cycles.		
P _{it}	Severity of long-term flicker (Long term severity), calculated over 2 hours.		
P _{st}	Severity of short-term flicker (Short term severity), calculated over 10 minutes.		
Q _f Order of a b	Reactive power.		
	armonic: integer equal to the ratio of the frequency of the harmonic to the frequency of the fundamental.		
RMS	RMS value of current or voltage (Root Mean Square). Square root of the arithmetic mean of the square of the in- stantaneous values of a quantity during a specified interval of time (200 ms, 1 s, or 3 s).		
RVC	Rapid Voltage Changes.		
S	Apparent power.		
S-h Din threshol	Harmonics in power.		
Dip threshold: voltage specified for detection of the beginning and end of a voltage dip. Temporary overvoltage at industrial frequency: temporary increase in the amplitude of a voltage at a point in the electrical network to above some specified threshold.			
т	Relative date of the time cursor.		
T	Tera (10 ¹²)		
tan φ	Tangent of the phase difference of the voltage with respect to the current.		
-	tage: voltage by which a network is designated or identified.		
Тое	Tonnes oil equivalent (nuclear or non-nuclear).		
THD	Total Harmonic Distortion. Total harmonic distortion is the percentage of harmonics in a signal, referred to the RMS value of the fundamental (%f) or to the total RMS value without DC (%r).		
U	Phase-to-phase voltage or voltage between phases.		
U0,	Phase-to-earth voltage unbalance.		
U	-		

U2 ₂ Inverse phase-to-earth voltage unbalance if the neutral is connected, otherwise phase-to-phase volta	tage.
--	-------

- $U_1 = U_{12}$ Phase-to-phase voltage between phases 1 and 2.
- **U2** = U_{23} Phase-to-phase voltage between phases 2 and 3.
- $U_3 = U_{31}$ Phase-to-phase voltage between phases 3 and 1.
- **U-h** Harmonics in phase-to-phase voltage.
- Uc Declared supply voltage, normally Uc = Un.
- UCF Crest factor of the phase-to-phase voltage (line voltage).
- Ud Distorting phase-to-phase RMS voltage.
- UDC Phase-to-phase DC voltage.
- Udin Declared input voltage, Udin = Uc x transducer ratio.
- **Uh** Harmonic of the phase-to-phase voltage.
- UPK+ Maximum peak phase-to-phase voltage.
- **UPK-** Minimum peak phase-to-phase voltage.
- Un Nominal network voltage.

Nominal network voltage.

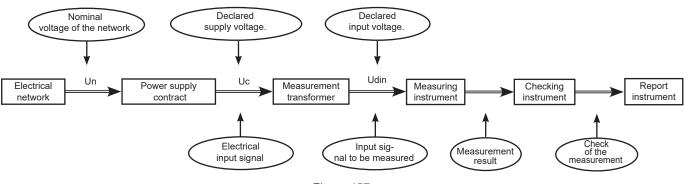


Figure 157

Networks that have a nominal voltage 100 V <Un > 1000 V have standard voltages of:

- Phase-to-earth voltages: 120, 230, 347, 400 V
- Phase-to-phase voltages: 208, 230, 240, 400, 480, 600, 690, 1000 V

In some countries there are also:

- Phase-to-earth voltages: 100, 220, 240, 380 V
- Phase-to-phase voltages: 200, 220, 380, 415, 600, 660 V

URMS Phase-to-phase RMS voltage.

UTC Coordinated Universal Time. Uthd Total harmonic distortion of the phase-to-phase voltage. UTHDF Harmonic distortion of the phase-to-phase voltage referred to the RMS value of the fundamental. UTHDR Harmonic distortion of the phase-to-phase voltage referred to the total RMS value without DC. ν Phase-to-earth voltage or phase-neutral voltage or unit = volt. **V1** Phase-to-earth voltage on phase 1. **V2** Phase-to-earth voltage on phase 2. V3 Phase-to-earth voltage on phase 3. V-h Harmonics in phase-to-earth voltage. VA Unit = voltampere. VAh Unit = voltampere hour. Unit = reactive voltampere. var varh Unit reactive voltampere hour. Crest factor of the phase-to-earth voltage. VCF Vd Distorting phase-to-earth RMS voltage. VDC Phase-to-earth DC voltage. VPK+ Maximum peak value of phase-to-earth voltage. **Урк-**Minimum peak value of phase-to-earth voltage. Vh Harmonic of the phase-to-earth voltage.

- VN Phase-to-earth voltage on the neutral.
- **Channel and phase:** a measurement channel corresponds to a difference of potential between two conductors. A phase corresponds to a single conductor. In polyphase systems, a measurement channel can be between two phases, between a phase and the neutral, between a phase and the earth, or between the neutral and the earth.
- VRMS Phase-to-earth RMS voltage.
- VTHD Total harmonic distortion of the phase-to-earth voltage.
- VTHDF Harmonic distortion of the phase-to-earth voltage referred to the RMS value of the fundamental.
- VTHDR Harmonic distortion of the phase-to-earth voltage referred to the total RMS value without DC.
- W Unit = watt.

Wh Unit = watt-hour.

20.11. ABBREVIATIONS

Prefixes (of units) of the International System (S.I.)

Prefix	Symbol:	Multiplies by
milli	m	10 ⁻³
kilo	k	10 ³
Mega	М	10 ⁶
Giga	G	10 ⁹
Tera	Т	10 ¹²
Peta	Р	10 ¹⁵
Exa	E	10 ¹⁸